scholarly journals Shear Wave Predictions of Achilles Tendon Loading during Human Walking

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Emily M. Keuler ◽  
Isaac F. Loegering ◽  
Jack A. Martin ◽  
Joshua D. Roth ◽  
Darryl G. Thelen

Abstract The evaluation of in vivo muscle-tendon loads is fundamental to understanding the actuation of normal and pathological human walking. However, conventional techniques for measuring muscle-tendon loads in the human body are too invasive for use in gait analysis. Here, we demonstrate the use of noninvasive measures of shear wave propagation as a proxy for Achilles tendon loading during walking. Twelve healthy young adults performed isometric ankle plantarflexion on a dynamometer. Achilles tendon wave speed, tendon moment arms, tendon cross-sectional area and ankle torque were measured. We first showed that the linear relationship between tendon stress and wave speed squared can be calibrated from isometric tasks. There was no significant effect of knee angle, ankle angle or loading rate on the subject-specific calibrations. Calibrated shear wave tensiometers were used to estimate Achilles tendon loading when walking at speeds ranging from 1 to 2 m/s. Peak tendon stresses during pushoff increased from 41 to 48 MPa as walking speed was increased, and were comparable to estimates from inverse dynamics. The tensiometers also detected Achilles tendon loading of 4 to 7 MPa in late swing. Late swing tendon loading was not discernible in the inverse dynamics estimates, but did coincide with passive stretch of the gastrocnemius muscle-tendon units. This study demonstrates the capacity to use calibrated shear wave tensiometers to evaluate tendon loading in locomotor tasks. Such technology could prove beneficial for identifying the muscle actions that underlie subject-specific movement patterns.

2018 ◽  
Vol 44 (3) ◽  
pp. 515-521 ◽  
Author(s):  
Lindsey C. Carlson ◽  
Timothy J. Hall ◽  
Ivan M. Rosado-Mendez ◽  
Mark L. Palmeri ◽  
Helen Feltovich

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
William J. Anderst ◽  
William F. Donaldson ◽  
Joon Y. Lee ◽  
James D. Kang

The effects of degeneration and surgery on cervical spine mechanics are commonly evaluated through in vitro testing and finite element models derived from these tests. The objectives of the current study were to estimate the load applied to the C2 vertebra during in vivo functional flexion-extension and to evaluate the effects of anterior cervical arthrodesis on spine kinetics. Spine and head kinematics from 16 subjects (six arthrodesis patients and ten asymptomatic controls) were determined during functional flexion-extension using dynamic stereo X-ray and conventional reflective markers. Subject-specific inverse dynamics models, including three flexor muscles and four extensor muscles attached to the skull, estimated the force applied to C2. Total force applied to C2 was not significantly different between arthrodesis and control groups at any 10 deg increment of head flexion-extension (all p values ≥ 0.937). Forces applied to C2 were smallest in the neutral position, increased slowly with flexion, and increased rapidly with extension. Muscle moment arms changed significantly during flexion-extension, and were dependent upon the direction of head motion. The results suggest that in vitro protocols and finite element models that apply constant loads to C2 do not accurately represent in vivo cervical spine kinetics.


2014 ◽  
Vol 47 (11) ◽  
pp. 2685-2692 ◽  
Author(s):  
Ryan J. DeWall ◽  
Laura C. Slane ◽  
Kenneth S. Lee ◽  
Darryl G. Thelen

2019 ◽  
Vol 7 (23) ◽  
Author(s):  
Samuel A. Acuña ◽  
Anahid Ebrahimi ◽  
Robin L. Pomeroy ◽  
Jack A. Martin ◽  
Darryl G. Thelen

2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Yihwan Jung ◽  
Cong-Bo Phan ◽  
Seungbum Koo

Joint contact forces measured with instrumented knee implants have not only revealed general patterns of joint loading but also showed individual variations that could be due to differences in anatomy and joint kinematics. Musculoskeletal human models for dynamic simulation have been utilized to understand body kinetics including joint moments, muscle tension, and knee contact forces. The objectives of this study were to develop a knee contact model which can predict knee contact forces using an inverse dynamics-based optimization solver and to investigate the effect of joint constraints on knee contact force prediction. A knee contact model was developed to include 32 reaction force elements on the surface of a tibial insert of a total knee replacement (TKR), which was embedded in a full-body musculoskeletal model. Various external measurements including motion data and external force data during walking trials of a subject with an instrumented knee implant were provided from the Sixth Grand Challenge Competition to Predict in vivo Knee Loads. Knee contact forces in the medial and lateral portions of the instrumented knee implant were also provided for the same walking trials. A knee contact model with a hinge joint and normal alignment could predict knee contact forces with root mean square errors (RMSEs) of 165 N and 288 N for the medial and lateral portions of the knee, respectively, and coefficients of determination (R2) of 0.70 and −0.63. When the degrees-of-freedom (DOF) of the knee and locations of leg markers were adjusted to account for the valgus lower-limb alignment of the subject, RMSE values improved to 144 N and 179 N, and R2 values improved to 0.77 and 0.37, respectively. The proposed knee contact model with subject-specific joint model could predict in vivo knee contact forces with reasonable accuracy. This model may contribute to the development and improvement of knee arthroplasty.


2005 ◽  
Vol 99 (3) ◽  
pp. 1050-1055 ◽  
Author(s):  
Christopher I. Morse ◽  
Jeanette M. Thom ◽  
Neil D. Reeves ◽  
Karen M. Birch ◽  
Marco V. Narici

Sarcopenia and muscle weakness are well-known consequences of aging. The aim of the present study was to ascertain whether a decrease in fascicle force (Ff) could be accounted for entirely by muscle atrophy. In vivo physiological cross-sectional area (PCSA) and specific force (Ff/PCSA) of the lateral head of the gastrocnemius (GL) muscle were assessed in a group of elderly men [EM, aged 73.8 yr (SD 3.5), height 173.4 cm (SD 4.4), weight 78.4 kg (SD 8.3); means (SD)] and for comparison in a group of young men [YM, aged 25.3 yr (SD 4.4), height 176.4 cm (SD 7.7), weight 79.1 kg (SD 11.9)]. GL muscle volume (Vol) and Achilles tendon moment arm length were evaluated using magnetic resonance imaging. Pennation angle and fiber fascicle length (Lf) were measured using B-mode ultrasonography during isometric maximum voluntary contraction of the plantar flexors. PCSA was estimated as Vol/Lf. GL Ff was calculated by dividing Achilles tendon force by the cosine of θ, during the interpolation of a supramaximal doublet, and accounting for antagonist activation level (assessed using EMG), Achilles tendon moment arm length, and the relative PCSA of the GL within the plantar flexor group. Voluntary activation of the plantar flexors was lower in the EM than in the YM (86 vs. 98%, respectively, P < 0.05). Compared with the YM, plantar flexor maximal voluntary contraction torque and Ff of the EM were lower by 47 and 40%, respectively ( P < 0.01). Both Vol and PCSA were smaller in the EM by 28% ( P < 0.01) and 16% ( P < 0.05), respectively. Also, pennation angle was 12% smaller in the EM, whereas there was no significant difference in Lf between the YM and EM. After accounting for differences in agonists and antagonists activation, the Ff/PCSA of the EM was 30% lower than that of the YM ( P < 0.01). These findings demonstrate that the loss of muscle strength with aging may be explained not only by a reduction in voluntary drive to the muscle, but mostly by a decrease in intrinsic muscle force. This phenomenon may possibly be due to a reduction in single-fiber specific tension.


2016 ◽  
Vol 22 ◽  
pp. 1186-1191 ◽  
Author(s):  
Li-ning Zhang ◽  
Wen-bo Wan ◽  
Yue-xiang Wang ◽  
Zi-yu Jiao ◽  
Li-hai Zhang ◽  
...  

2021 ◽  
Vol 11 (20) ◽  
pp. 9391
Author(s):  
Emma Harris ◽  
Ruchi Sinnatamby ◽  
Elizabeth O’Flynn ◽  
Anna M. Kirby ◽  
Jeffrey C. Bamber

Quantitative measures of radiation-induced breast stiffness are required to support clinical studies of novel breast radiotherapy regimens and exploration of personalised therapy, however, variation between shear-wave elastography (SWE) machines may limit the usefulness of shear-wave speed (cs) for this purpose. Mean cs measured in four healthy volunteers’ breasts and a phantom using 2D-SWE machines Acuson S2000 (Siemens Medical Solutions) and Aixplorer (Supersonic Imagine) were compared. Shear-wave speed was measured in the skin region, subcutaneous adipose tissue and parenchyma. cs estimates were on average 2.3% greater when using the Aixplorer compared to S2000 in vitro. In vivo, cs estimates were on average 43.7%, 36.3% and 49.9% significantly greater (p << 0.01) when using the Aixplorer compared to S2000, for skin region, subcutaneous adipose tissue and parenchyma, respectively. In conclusion, despite relatively small differences between machines observed in vitro, large differences in absolute measures of shear wave speed measured were observed in vivo, which may prevent pooling of cross-machine data in clinical studies of the breast.


Author(s):  
Justin D. Cowder ◽  
Thomas S. Buchanan ◽  
Kurt T. Manal

Accurate estimates for Achilles tendon moment arm (MA) are essential when computing gastroc-soleus force from the net plantarflexion moment. Errors in approximating the Achilles tendon MA will adversely affect the muscle force estimate. We have noted that Achilles tendon MAs reported by Maganaris [1] and others are significantly greater (> 1 cm) than values used by Delp et al. computed using SIMM [2]. It is important to note that the stature of Delp’s lower limb model was almost identical to the average weight and height of the subjects in a study by Maganaris. This led us to question which MA profiles were more anatomically meaningful. To address this, we calculated Achilles tendon MAs for 10 male subjects using a previously described method. The method combines ultrasound and video-based motion capture, and referred to as the hybrid method. Subjects in our study were chosen to ensure they were of a similar stature to those tested by Maganaris, thereby minimizing confounding effects of subject anthropometrics.


Sign in / Sign up

Export Citation Format

Share Document