scholarly journals Aging and aerobic fitness affect the contribution of noradrenergic sympathetic nerves to the rapid cutaneous vasodilator response to local heating

2011 ◽  
Vol 110 (5) ◽  
pp. 1264-1270 ◽  
Author(s):  
Garry A. Tew ◽  
John M. Saxton ◽  
Markos Klonizakis ◽  
James Moss ◽  
Alan D. Ruddock ◽  
...  

Sedentary aging results in a diminished rapid cutaneous vasodilator response to local heating. We investigated whether this diminished response was due to altered contributions of noradrenergic sympathetic nerves by assessing 1) the age-related decline and 2) the effect of aerobic fitness. Using laser-Doppler flowmetry, we measured skin blood flow (SkBF) in young (24 ± 1 yr) and older (64 ± 1 yr) endurance-trained and sedentary men ( n = 7 per group) at baseline and during 35 min of local skin heating to 42°C at 1) untreated forearm sites, 2) forearm sites treated with bretylium tosylate (BT), which prevents neurotransmitter release from noradrenergic sympathetic nerves, and 3) forearm sites treated with yohimbine + propranolol (YP), which antagonizes α- and β-adrenergic receptors. SkBF was converted to cutaneous vascular conductance (CVC = SkBF/mean arterial pressure) and normalized to maximal CVC (%CVCmax) achieved by skin heating to 44°C. Pharmacological agents were administered using microdialysis. In the young trained group, the rapid vasodilator response was reduced at BT and YP sites ( P < 0.05); by contrast, in the young sedentary and older trained groups, YP had no effect ( P > 0.05), but BT did ( P > 0.05). Neither BT nor YP affected the rapid vasodilator response in the older sedentary group ( P > 0.05). These data suggest that the age-related reduction in the rapid vasodilator response is due to an impairment of sympathetic-dependent mechanisms, which can be partly attenuated with habitual aerobic exercise. Rapid vasodilation involves noradrenergic neurotransmitters in young trained men and nonadrenergic sympathetic cotransmitters (e.g., neuropeptide Y) in young sedentary and older trained men, possibly as a compensatory mechanism. Finally, in older sedentary men, the rapid vasodilation appears not to involve the sympathetic system.

2018 ◽  
Vol 43 (10) ◽  
pp. 1019-1026 ◽  
Author(s):  
Gary J. Hodges ◽  
Matthew C. Mueller ◽  
Stephen S. Cheung ◽  
Bareket Falk

Few studies have investigated skin blood flow in children and age-related differences in the underlying mechanisms. We examined mechanisms of skin blood flow responses to local heating, postocclusive reactive hyperaemia (PORH), and isometric handgrip exercise in adult and prepubescent males, hypothesizing that skin blood flow responses would be greater in children compared with adults. We measured skin blood flow in 12 boys (age, 9 ± 1 years) and 12 men (age, 21 ± 1 years) using laser-Doppler flowmetry at rest, in response to 3-min PORH, 2-min isometric handgrip exercise, and local skin heating to 39 °C (submaximal) and 44 °C (maximal). Using wavelet analysis we assessed endothelial, neural, and myogenic activities. At rest and in response to local heating to 39 °C, children had higher skin blood flow and endothelial activity compared with men (d ≥ 1.1, p < 0.001) and similar neurogenic and myogenic activities (d < 0.2, p > 0.05). Maximal responses to 44 °C local skin heating, PORH, and isometric handgrip exercise did not differ between boys and men (all d ≤ 0.2, p > 0.05). During PORH children demonstrated greater endothelial activity compared with men (d ≥ 0.6, p < 0.05); in contrast, men had higher neurogenic activity (d = 1.0, p < 0.01). During isometric handgrip exercise there were no differences in endothelial, neurogenic, and myogenic activities (d < 0.2, p > 0.3), with boys and men demonstrating similar increases in endothelial activity and decreases in myogenic activity (d ≥ 0.8, p < 0.05). These data suggest that boys experience greater levels of skin blood flow at rest and in response to submaximal local heating compared with men, while maximal responses appear to be similar. Additionally, endothelial mediators seem to contribute more to vasodilatation in boys than in men.


2016 ◽  
Vol 121 (6) ◽  
pp. 1354-1362 ◽  
Author(s):  
Anna E. Stanhewicz ◽  
Jody L. Greaney ◽  
Lacy M. Alexander ◽  
W. Larry Kenney

Reflex cutaneous vasodilation in response to passive heating is attenuated in human aging. This diminished response is mediated, in part, by age-associated reductions in endothelial function; however, the contribution of altered skin sympathetic nervous system activity (SSNA) is unknown. We hypothesized that 1) healthy older adults would demonstrate blunted SSNA responses to increased core temperature compared with young adults and 2) the decreased SSNA response would be associated with attenuated cutaneous vasodilation. Reflex vasodilation was elicited in 13 young [23 ± 1 (SE) yr] and 13 older (67 ± 2 yr) adults using a water-perfused suit to elevate esophageal temperature by 1.0°C. SSNA (peroneal microneurography) and red cell flux (laser Doppler flowmetry) in the innervated dermatome (the dorsum of foot) were continuously measured. SSNA was normalized to, and expressed as, a percentage of baseline. Cutaneous vascular conductance (CVC) was calculated as flux/mean arterial pressure and expressed as a percentage of maximal CVC (local heating, 43°C). Reflex vasodilation was attenuated in older adults ( P < 0.001). During heating, SSNA increased in both groups ( P < 0.05); however, the response was significantly blunted in older adults ( P = 0.01). The increase in SSNA during heating was linearly related to cutaneous vasodilation in both young ( R2 = 0.87 ± 0.02, P < 0.01) and older ( R2 = 0.76 ± 0.05, P < 0.01) adults; however, slope of the linear regression between ΔSSNA and ΔCVC was reduced in older compared with young (older: 0.05 ± 0.01 vs. young: 0.08 ± 0.01; P < 0.05). These data demonstrate that age-related impairments in reflex cutaneous vasodilation are mediated, in part, by blunted efferent SSNA during hyperthermia.


2008 ◽  
Vol 295 (1) ◽  
pp. H123-H129 ◽  
Author(s):  
Dean L. Kellogg ◽  
Joan L. Zhao ◽  
Yubo Wu

Nitric oxide (NO) participates in locally mediated vasodilation induced by increased local skin temperature (Tloc) and in sympathetically mediated vasodilation during whole body heat stress. We hypothesized that endothelial NOS (eNOS) participates in the former, but not the latter, response. We tested this hypothesis by examining the effects of the eNOS antagonist NG-amino-l-arginine (l-NAA) on skin blood flow (SkBF) responses to increased Tloc and whole body heat stress. Microdialysis probes were inserted into forearm skin for drug delivery. One microdialysis site was perfused with l-NAA in Ringer solution and a second site with Ringer solution alone. SkBF [laser-Doppler flowmetry (LDF)] and blood pressure [mean arterial pressure (MAP)] were monitored, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF ÷ MAP). In protocol 1, Tloc was controlled with LDF/local heating units. Tloc initially was held at 34°C and then increased to 41.5°C. In protocol 2, after a normothermic period, whole body heat stress was induced (water-perfused suits). At the end of both protocols, 58 mM sodium nitroprusside was perfused at both microdialysis sites to cause maximal vasodilation for data normalization. In protocol 1, CVC at 34°C Tloc did not differ between l-NAA-treated and untreated sites ( P > 0.05). Local skin warming to 41.5°C Tloc increased CVC at both sites. This response was attenuated at l-NAA-treated sites ( P < 0.05). In protocol 2, during normothermia, CVC did not differ between l-NAA-treated and untreated sites ( P > 0.05). During heat stress, CVC rose to similar levels at l-NAA-treated and untreated sites ( P > 0.05). We conclude that eNOS is predominantly responsible for NO generation in skin during responses to increased Tloc, but not during reflex responses to whole body heat stress.


1997 ◽  
Vol 272 (4) ◽  
pp. H1609-H1614 ◽  
Author(s):  
W. L. Kenney ◽  
A. L. Morgan ◽  
W. B. Farquhar ◽  
E. M. Brooks ◽  
J. M. Pierzga ◽  
...  

Older men and women respond to local and reflex-mediated heat stress with an attenuated increase in cutaneous vascular conductance (CVC). This study was performed to test the hypothesis that an augmented or sustained noradrenergic vasoconstriction (VC) may play a role in this age-related difference. Fifteen young (22 +/- 1 yr) and 15 older (66 +/- 1 yr) men exercised at 50% peak oxygen uptake in a 36 degrees C environment. Skin perfusion was monitored at two sites on the right forearm by laser-Doppler flowmetry: one site pretreated with bretylium tosylate (BT) to block the local release of norepinephrine and thus VC and an adjacent control site. Blockade of reflex VC was verified during whole body cooling using a water-perfused suit. CVC (perfusion divided by mean arterial pressure) at each site was reported as a percentage of the maximal CVC (%CVCmax) induced at the end of each experiment by prolonged local heating at 42 degrees C. Neither age nor BT affected the %CVCmax (75-86%) attained at high core temperatures. During the early rise phase of CVC, the %CVCmax-change in esophageal temperature (delta T(es)) curve was shifted to the right in the older men (effective delta T(es) associated with 50% CVC response for young, 0.22 +/- 0.04 and 0.39 +/- 0.04 degrees C and for older, 0.73 +/- 0.04 and 0.85 +/- 0.04 degrees C at control and BT sites, respectively). BT had no interactive effect on this age difference, suggesting a lack of involvement of the VC system in the attenuated CVC response of individuals over the age of 60 yr. Additionally, increases in skin vascular conductance were quantitatively compared by measuring increases in total forearm vascular conductance (FVC, restricted to the forearm skin under these conditions). After the initial approximately 0.2 degrees C increase in T(es), FVC was 40-50% lower in the older men (P < 0.01) for the remainder of the exercise. Decreased active vasodilator sensitivity to increasing core temperature, coupled with structural limitations to vasodilation, appears to limit the cutaneous vascular response to exertional heat stress in older subjects.


2002 ◽  
Vol 93 (5) ◽  
pp. 1644-1649 ◽  
Author(s):  
Christopher T. Minson ◽  
Lacy A. Holowatz ◽  
Brett J. Wong ◽  
W. Larry Kenney ◽  
Brad W. Wilkins

Cutaneous vasodilation is reduced in healthy older vs. young subjects; however, the mechanisms that underlie these age-related changes are unclear. Our goal in the present study was to determine the role of nitric oxide (NO) and the axon reflexes in the skin blood flow (SkBF) response to local heating with advanced age. We placed two microdialysis fibers in the forearm skin of 10 young (Y; 22 ± 2 yr) and 10 older (O; 77 ± 5 yr) men and women. SkBF over each site was measured by laser-Doppler flowmetry (LDF; Moor DRT4). Both sites were heated to 42°C for ∼60 min while 10 mM N G-nitro-l-arginine methyl ester (l-NAME) was infused throughout the protocol to inhibit NO synthase (NOS) in one site and 10 mM l-NAME was infused after 40 min of local heating in the second site. Data were expressed as a percentage of maximal vasodilation (%CVCmax; 28 mM nitroprusside infusion). Local heating beforel-NAME infusion resulted in a significantly reduced initial peak (Y: 61 ± 2%CVCmax vs. O: 46 ± 4%CVCmax) and plateau (Y: 93 ± 2%CVCmaxvs. O: 82 ± 5%CVCmax) CVC values in older subjects ( P < 0.05). When NOS was inhibited after 40 min of heating, CVC declined to the same value in the young and older groups. Thus the overall contribution of NO to the plateau phase of the SkBF response to local heating was less in the older subjects. The initial peak response was significantly lower in the older subjects in both microdialysis sites (Y: 52 ± 4%CVCmax vs. O: 38 ± 5%CVCmax; P < 0.05). These data suggest that age-related changes in both axon reflex-mediated and NO-mediated vasodilation contribute to attenuated cutaneous vasodilator responses in the elderly.


2016 ◽  
Vol 116 (2) ◽  
pp. 204-210 ◽  
Author(s):  
Billie K. Alba ◽  
Anna E. Stanhewicz ◽  
W. Larry Kenney ◽  
Lacy M. Alexander

AbstractIn epidemiological studies, chronic dairy milk consumption is associated with improved vascular health and reduced age-related increases in blood pressure. Although milk protein supplementation augments conduit artery flow-mediated dilation, whether or not acute dairy milk intake may improve microvascular function remains unclear. We hypothesised that dairy milk would increase direct measurement of endothelial nitric oxide (NO)-dependent cutaneous vasodilation in response to local skin heating. Eleven men and women (61 (sem2) years) ingested two or four servings (473 and 946 ml) of 1 % dairy milk or a rice beverage on each of 4 separate study days. In a subset of five subjects, an additional protocol was completed after 473 ml of water ingestion. Once a stable blood flow occurred, 15 mm-NG-nitro-l-arginine methyl ester was perfused (intradermal microdialysis) to quantify NO-dependent vasodilation. Red-blood-cell flux (RBF) was measured by laser-Doppler flowmetry, and cutaneous vascular conductance (CVC=RBF/mean arterial pressure) was calculated and normalised to maximum (%CVCmax; 28 mm-sodium nitroprusside). Full expression of cutaneous vasodilation was not different among dairy milk, rice beverage and water, and there was no effect of serving size on the total vasodilatory response. Contrary to our hypothesis, NO-dependent vasodilation was lower for dairy milk than rice beverage (D: 49 (sem5), R: 55 (sem5) %CVCmax;P<0·01). Acute dairy milk ingestion does not augment NO-dependent vasodilation in the cutaneous microcirculation compared with a rice beverage control.


2007 ◽  
Vol 102 (6) ◽  
pp. 2301-2306 ◽  
Author(s):  
Brad W. Wilkins ◽  
Elizabeth A. Martin ◽  
Shelly K. Roberts ◽  
Michael J. Joyner

In humans, vasoactive intestinal peptide (VIP) may play a role in reflex cutaneous vasodilation during body heating. We tested the hypothesis that the nitric oxide (NO)-dependent contribution to active vasodilation is enhanced in the skin of subjects with cystic fibrosis (CF), compensating for sparse levels of VIP. In 2 parallel protocols, microdialysis fibers were placed in the skin of 11 subjects with CF and 12 controls. Lactated Ringer was perfused at one microdialysis site and NG-nitro-l-arginine methyl ester (2.7 mg/ml) was perfused at a second microdialysis site. Skin blood flow was monitored over each site with laser-Doppler flowmetry. In protocol 1, local skin temperature was increased 0.5°C every 5 s to 42°C, and then it maintained at 42°C for ∼45 min. In protocol 2, subjects wore a tube-lined suit perfused with water at 50°C, sufficient to increase oral temperature (Tor) 0.8°C. Cutaneous vascular conductance (CVC) was calculated (flux/mean arterial pressure) and scaled as percent maximal CVC (sodium nitroprusside; 8.3 mg/ml). Vasodilation to local heating was similar between groups. The change (Δ%CVCmax) in CVC with NO synthase inhibition on the peak (9 ± 3 vs. 12 ± 5%CVCmax; P = 0.6) and the plateau (45 ± 3 vs. 35 ± 5%CVCmax; P = 0.1) phase of the skin blood flow response to local heating was similar in CF subjects and controls, respectively. Reflex cutaneous vasodilation increased CVC in CF subjects (58 ± 4%CVCmax) and controls (53 ± 4%CVCmax; P = 0.37) and NO synthase inhibition attenuated CVC in subjects with CF (37 ± 6%CVCmax) and controls (35 ± 5%CVCmax; P = 0.8) to a similar degree. Thus the preservation of cutaneous active vasodilation in subjects with CF is not associated with an enhanced NO-dependent vasodilation.


2017 ◽  
Vol 123 (6) ◽  
pp. 1461-1467 ◽  
Author(s):  
Caroline J. Smith ◽  
Daniel H. Craighead ◽  
Lacy M. Alexander

Microdialysis is a minimally invasive technique often paired with laser Doppler flowmetry to examine cutaneous microvascular function, yet presents with several challenges, including incompatibility with perfusion of highly lipophilic compounds. The present study addresses this methodological concern, with an emphasis on the independent effects of commonly used vehicle dialysis solutions to improve solubility of pharmacological agents with otherwise low aqueous solubility. Four microdialysis fibers were placed in the ventral forearm of eight subjects (4 men, 4 women; 25 ± 1 yr) with sites randomized to serve as 1) control (lactated Ringer’s), 2) Sodium carbonate-bicarbonate buffer administered at physiological pH [SCB-HCl; pH 7.4, achieved via addition of hydrochloric acid (HCl)], 3) 0.02% ethanol, and 4) 2% dimethyl sulfoxide (DMSO). After baseline (34°C), vehicle solutions were administered throughout a standardized local heating protocol to 42°C. Laser Doppler flowmetry provided an index of blood flow. Cutaneous vascular conductance was calculated and normalized to maximum (%CVCmax, sodium nitroprusside and 43°C local heat). The SCB-HCl solution increased baseline %CVCmax (control: 9.7 ± 0.8; SCB-HCl: 21.5 ± 3.5%CVCmax; P = 0.03), but no effects were observed during heating or maximal vasodilation. There were no differences with perfusion of ethanol or DMSO at any stage of the protocol ( P > 0.05). These data demonstrate the potential confounding effects of some vehicle dialysis solutions on cutaneous vascular function. Notably, this study provides evidence that 2% DMSO and 0.02% ethanol are acceptable vehicles with no confounding local vascular effects to a standardized local heating protocol at the concentrations presented. NEW & NOTEWORTHY This study examined the independent effects of common vehicle solutions on cutaneous vascular responses. A basic buffer (SCB-HCl) caused baseline vasodilation; 2% DMSO and 0.02% ethanol had no effects. This highlights the need for considering potential confounding effects of solubilizing solutions when combined with low aqueous soluble pharmacological agents. Importantly, DMSO and ethanol do not appear to influence cutaneous vascular function during baseline or local heating at the concentrations studied, allowing their use without confounding effects.


2003 ◽  
Vol 95 (3) ◽  
pp. 1016-1024 ◽  
Author(s):  
Thayne A. Munce ◽  
W. Larry Kenney

Age-related changes in neurogenic vasodilation mediated by sensory nerves may alter local skin blood flow (SkBF) responses in older individuals. The purpose of this study was to determine the age-specific modification of cutaneous vasodilation by capsaicin-sensitive primary afferent (CSPA) nerves during local heating. Nine young (18-30 yr), eight middle-aged (40-55 yr), and eight older (65-80 yr) healthy men participated in the experiments. Two local-heating protocols (rapid and slow) were performed before and after 1 wk of capsaicin pretreatment (CP), used to desensitize CSPAs. All temperatures were below those that elicit pain. SkBF was measured with a laser-Doppler imager and indexed to percentage of maximal cutaneous vascular conductance (%CVCmax). CP caused a significant reduction in %CVCmax in the middle-aged and older groups during slow heating ( P < 0.05), without affecting %CVCmax in the young group. During rapid heating, CP significantly reduced (53.9 ± 4.4 vs. 74.4 ± 7.4% CVCmax, P < 0.05), but did not abolish, the initial sensory nerve-mediated rise in SkBF in the young group. No significant effects of CP on SkBF were observed during rapid heating in the middle-aged or older groups. These results indicate that, with advanced age, CSPA activity is more important to the maximal SkBF response during prolonged local heating, whereas it has a reduced role in the initial SkBF peak elicited by rapid local heating. In summary, CSPA activity contributes modestly to the overall SkBF response to local heating in an age-specific manner.


2017 ◽  
Vol 313 (1) ◽  
pp. R51-R57 ◽  
Author(s):  
Megan M. Wenner ◽  
Kelly N. Sebzda ◽  
Andrew V. Kuczmarski ◽  
Ryan T. Pohlig ◽  
David G. Edwards

Endothelin-1 (ET-1) contributes to age-related endothelial dysfunction in men via the ETAreceptor. However, there are sex differences in the ET-1 system, and ETBreceptors are modulated by sex hormones. The purpose of this study was to test the hypothesis that ETBreceptors contribute to impaired vasodilatory function in postmenopausal women (PMW). We measured flow-mediated dilation (FMD) using ultrasound, and cutaneous nitric oxide-mediated vasodilation during local heating (42°C) via laser Doppler flowmetry in 18 young women (YW; 22 ± 1 yr) and 16 PMW (56 ± 1 yr). Cutaneous microdialysis perfusions of lactated Ringer (control), an ETBreceptor antagonist (BQ-788, 300 nM), and an ETAreceptor antagonist (BQ-123, 500 nM), were done through separate fibers, followed by perfusions of sodium nitroprusside (28 mM) and local heating to 43°C (max). Cutaneous vascular conductance (CVC) was calculated as cutaneous blood flow/mean arterial pressure and expressed as a percent of maximal dilation. FMD (YW: 7.5 ± 0.5 vs. PMW: 5.6 ± 0.6%) and cutaneous vasodilation (YW: 93 ± 2 vs. PMW: 83 ± 4%CVCmax) were lower in PMW (both P < 0.05). Blockade of ETBreceptors decreased cutaneous vasodilation in YW (87 ± 2%CVCmax; P < 0.05 vs. control) but increased vasodilation in PMW (93 ± 1%CVCmax; P < 0.05 vs. control). ETAreceptor blockade had minimal effect in YW (92 ± 1%CVCmax) but increased cutaneous vasodilation in PMW (91 ± 2%CVCmax; P < 0.05 vs. control). In conclusion, ETBreceptors mediate vasodilation in YW, but this effect is lost after menopause. Impaired vasodilatory function in PMW is due in part to a loss of ETB-mediated dilation.


Sign in / Sign up

Export Citation Format

Share Document