scholarly journals Effects of galvanic vestibular stimulation on postural limb reflexes and neurons of spinal postural network

2012 ◽  
Vol 108 (1) ◽  
pp. 300-313 ◽  
Author(s):  
L.-J. Hsu ◽  
P. V. Zelenin ◽  
G. N. Orlovsky ◽  
T. G. Deliagina

Quadrupeds maintain the dorsal side up body orientation due to the activity of the postural control system driven by limb mechanoreceptors. Binaural galvanic vestibular stimulation (GVS) causes a lateral body sway toward the anode. Previously, we have shown that this new position is actively stabilized, suggesting that GVS changes a set point in the reflex mechanisms controlling body posture. The aim of the present study was to reveal the underlying neuronal mechanisms. Experiments were performed on decerebrate rabbits. The vertebral column was rigidly fixed, whereas hindlimbs were positioned on a platform. Periodic lateral tilts of the platform caused postural limb reflexes (PLRs): activation of extensors in the loaded and flexing limb and a decrease in extensor activity in the opposite (unloaded and extending) limb. Putative spinal interneurons were recorded in segments L4–L5 during PLRs, with and without GVS. We have found that GVS enhanced PLRs on the cathode side and reduced them on the anode side. This asymmetry in PLRs can account for changes in the stabilized body orientation observed in normal rabbits subjected to continuous GVS. Responses to platform tilts (frequency modulation) were observed in 106 spinal neurons, suggesting that they can contribute to PLR generation. Two neuron groups were active in opposite phases of the tilt cycle of the ipsi-limb: F-neurons in the flexion phase, and E-neurons in the extension phase. Neurons were driven mainly by afferent input from the ipsi-limb. If one supposes that F- and E-neurons contribute, respectively, to excitation and inhibition of extensor motoneurons, one can expect that the pattern of response to GVS in F-neurons will be similar to that in extensor muscles, whereas E-neurons will have an opposite pattern. We have found that ∼40% of all modulated neurons meet this condition, suggesting that they contribute to the generation of PLRs and to the GVS-caused changes in PLRs.

2018 ◽  
Vol 8 (11) ◽  
pp. 191 ◽  
Author(s):  
Osamu Aoki ◽  
Yoshitaka Otani ◽  
Shinichiro Morishita

Gazing at objects at a near distance (small eye-object distance) can reduce body sway. However, whether body sway is regulated by movement in the mediolateral or anteroposterior direction remains unclear. Galvanic vestibular stimulation (GVS) can induce body tilting in the mediolateral or anteroposterior direction. This study examined the directionality of the eye-object distance effect, using body-tilting GVS manipulations. Ten healthy subjects (aged 21.1 ± 0.3 years) stood on a force plate covered with a piece of foamed rubber and either closed their eyes or gazed at a marker located 0.5 m, 1.0 m, or 1.5 m in front of them. The GVS polarities were set to evoke rightward, forward, and backward body tilts. To compare the effects of eye-object distance in the mediolateral and anteroposterior directions, the root mean square (RMS) of the center of pressure (COP) without GVS was subtracted from the COP RMS during GVS. For swaying in the mediolateral direction, significant visual condition-related differences were found during rightward and forward GVS (p < 0.05). Thus, reductions in mediolateral body sway are more evident for smaller eye-object distances during rightward GVS. It would be appropriate to use body-tilting GVS to detect the directionality of the eye-object distance effect.


2002 ◽  
Vol 87 (1) ◽  
pp. 1-14 ◽  
Author(s):  
T. G. Deliagina ◽  
E. L. Pavlova

A postural control system in the lamprey is driven by vestibular input and maintains the dorsal-side-up orientation of the animal during swimming. After a unilateral labyrinthectomy (UL), the lamprey continuously rolls toward the damaged side. Normally, a recovery of postural equilibrium (“vestibular compensation”) takes about 1 mo. However, illumination of the eye contralateral to UL results in an immediate and reversible restoration of equilibrium. Here we used eye illumination as a tool to examine a functional recovery of the postural network. Important elements of this network are the reticulospinal (RS) neurons, which are driven by vestibular input and transmit commands for postural corrections to the spinal cord. In this study, we characterized modifications of the vestibular responses in individual RS neurons caused by UL and the effect exerted on these responses by eye illumination. The activity of RS neurons was recorded from their axons in the spinal cord by chronically implanted electrodes, and spikes in individual axons were extracted from the population activity signals. The same neurons were recorded both before and after UL. Vestibular stimulation (rotation in the roll plane through 360°) and eye illumination were performed in quiescent animals. It was found that the vestibular responses on the UL-side changed only slightly, whereas the responses on the opposite side disappeared almost completely. This asymmetry in the bilateral activity of RS neurons is the most likely cause for the loss of equilibrium in UL animals. Illumination of the eye contralateral to UL resulted, first, in a restoration of vestibular responses in the neurons inactivated by UL and in an appearance of vestibular responses in some other neurons that did not respond to vestibular input before UL. These responses had directional sensitivity and zones of spatial sensitivity similar to those observed before UL. However, their magnitude was smaller than before UL. Second, the eye illumination caused a reduction of the magnitude of vestibular responses on the UL side. These two factors tend to restore symmetry in bilateral activity of RS neurons, which is the most likely cause for the recovery of equilibrium in the swimming UL lamprey. Results of this study are discussed in relation to the model of the roll control system proposed in our previous studies as well as in relation to the vestibular compensation.


2020 ◽  
Vol 14 ◽  
Author(s):  
Akiyoshi Matsugi ◽  
Kosuke Oku ◽  
Nobuhiko Mori

Objective: This study aimed to investigate whether galvanic vestibular stimulation with stochastic noise (nGVS) modulates the body sway and muscle activity of the lower limbs, depending on visual and somatosensory information from the foot using rubber-foam.Methods: Seventeen healthy young adults participated in the study. Each subject maintained an upright standing position on a force plate with/without rubber-foam, with their eyes open/closed, to measure the position of their foot center of pressure. Thirty minutes after baseline measurements under four possible conditions (eyes open/closed with/without rubber-foam) performed without nGVS (intensity: 1 mA, duration: 40 s), the stimulation trials (sham-nGVS/real-nGVS) were conducted under the same conditions in random order, which were then repeated a week or more later. The total center of pressure (COP) path length movement (COP-TL) and COP movement velocity in the mediolateral (Vel-ML) and anteroposterior (Vel-AP) directions were recorded for 30 s during nGVS. Furthermore, electromyography activity of the right tibial anterior muscle and soleus muscle was recorded for the same time and analyzed.Results: Three-way analysis of variance and post-hoc multiple comparison revealed a significant increment in COP-related parameters by nGVS, and a significant increment in soleus muscle activity on rubber. There was no significant effect of eye condition on any parameter.Conclusions: During nGVS (1 mA), body sway and muscle activity in the lower limb may be increased depending not on the visual condition, but on the foot somatosensory condition.


2021 ◽  
pp. 1-15
Author(s):  
Samar Babaee ◽  
Moslem Shaabani ◽  
Mohsen Vahedi

BACKGROUND: Galvanic vestibular stimulation (GVS) is believed to be one of the most valuable tools for studying the vestibular system. In our opinion, its combined effect on posture and perception needs to be examined more. OBJECTIVE: The present study was conducted to investigate the effect of a 20 Hz sinusoidal Galvanic Vestibular Stimulation (sGVS) on the body sway and subjective visual vertical (SVV) deviation through two sets of electrode montages (bipolar binaural and double temple-mastoidal stimulation) during a three-stage experiment (baseline, threshold, and supra-threshold levels). METHODS: While the individuals (32 normal individuals, 10 males, the mean age of 25.37±3.00 years) were standing on a posturography device and SVV goggles were put on, the parameters of the body sway and SVV deviation were measured simultaneously. Following the baseline stage (measuring without stimulation), the parameters were investigated during the threshold and supra-threshold stages (1 mA above the threshold) for 20 seconds. This was done separately for each electrode montage. Then, the results were compared between the three experimental stages and the two electrode montages. RESULTS: In both electrode montages, “the maximum amplitude” of the mediolateral (ML) and anteroposterior (AP) body sway decreased and increased in the threshold and supra-threshold stages, respectively, compared to the baseline stage. Comparison of the amount of  “amplitude change” caused by each electrode montages showed that the double temple-mastoidal stimulation induced a significantly greater amplitude change in body sway during both threshold and supra-threshold stages (relative to the baseline stage). The absolute mean values of the SVV deviation were significantly different between the baseline and supra-threshold levels in both electrode montages. The SVV deviation in double temple-mastoidal stimulation was a bit greater than that in the bipolar binaural stimulation. CONCLUSION: Double temple-mastoidal stimulation has induced greater amount of change in the body sway and SVV deviation. This may be due to the more effective stimulation of the otoliths than semicircular canals.


2006 ◽  
Vol 95 (5) ◽  
pp. 3199-3207 ◽  
Author(s):  
Jean-Claude Lepecq ◽  
Catherine De Waele ◽  
Sophie Mertz-Josse ◽  
Claudine Teyssèdre ◽  
Patrice Tran Ba Huy ◽  
...  

The present study aimed at determining whether vestibular inputs contribute to the perception of the direction of self-motion. This question was approached by investigating the effects of binaural bipolar galvanic vestibular stimulation (GVS) on visually induced self-motion (i.e., vection) in healthy subjects. Stationary seated subjects were submitted to optokinetic stimulation inducing either forward or upward linear vection. While perceiving vection, they were administered trapezoidal GVS of different intensities and ramp durations. Subjects indicated the shape and direction of their perceived self-motion path throughout the experiment by a joystick, and after each trial by the manipulation of a 3D mannequin. Results show that: 1) GVS induced alterations of the path of vection; 2) these alterations occurred more often after GVS onset than after GVS offset; 3) the occurrence of vection path alterations after GVS onset depended on the intensity of GVS but not on the steepness of the GVS variation; 4) the vection path deviated laterally according to either an oblique or a curved path; and 5) the vection path deviated toward the cathode side after GVS onset. It is the first time that vestibular information, already known to contribute to the induction of vection, is shown to modify self-motion perception during the course of vection.


2021 ◽  
Author(s):  
Lorenz Assländer ◽  
Louis-Solal Giboin ◽  
Markus Gruber ◽  
Roman Schniepp ◽  
Max Wühr

Abstract Noisy galvanic vestibular stimulation (nGVS) at imperceptible levels has been shown to reduce body sway. This improvement was commonly attributed to the mechanism of stochastic resonance (SR). However, it has never been explicitly tested whether nGVS-induced effects on body sway consistently follow a SR-like bell-shaped performance curve with optimal improvements at intermediate noise intensities. To test this, body sway in 21 young healthy participants was measured during varying nGVS amplitudes while standing with eyes closed in 3 conditions (quiet stance, sway referencing, sinusoidal platform tilts). Presence of SR-compatible response dynamics in each trial was assessed (1) by a goodness-of-fit analysis using an established SR-curve model and (2) by ratings from 3 human experts. In accordance to theory, we found reductions of body sway at one nGVS amplitude in most trials (75-95%). However, only few trials exhibited SR-compatible bell-shaped performance curves with increasing noise amplitudes (10-33%). Instead, body sway measures rather fluctuated randomly across nGVS amplitudes. This implies that, at least in young healthy adults, nGVS effects on body sway are incompatible with SR. Thus, previously reported reductions of body sway at particular nGVS intensities more likely result from inherent variations of the performance metric or by other yet unknown mechanisms.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Kazuma Aoyama ◽  
Hiroyuki Iizuka ◽  
Hideyuki Ando ◽  
Taro Maeda

2012 ◽  
Vol 107 (11) ◽  
pp. 3020-3026 ◽  
Author(s):  
P. V. Zelenin ◽  
L.-J. Hsu ◽  
G. N. Orlovsky ◽  
T. G. Deliagina

In quadrupeds, the dorsal-side-up body orientation during standing is maintained due to a postural system that is driven by feedback signals coming mainly from limb mechanoreceptors. In caudally decerebrated (postmammillary) rabbits, the efficacy of this system is considerably reduced. In this paper, we report that the efficacy of postural control in these animals can be restored with galvanic vestibular stimulation (GVS) applied transcutaneously to the labyrinths. In standing intact rabbits, GVS causes a lateral body sway towards the positive electrode. We used this GVS-caused sway to counteract the lateral body sway resulting from a mechanical perturbation of posture. Experiments were performed on postmammillary rabbits that stood on the tilting platform with their hindlimbs. To make the GVS value dependent on the postural perturbation (i.e., on the lateral body sway caused by tilt of the platform), an artificial feedback loop was formed in the following ways: 1) Information about the body sway was provided by a mechanical sensor; 2) The GVS current was applied when the sway exceeded a threshold value; the polarity of the current was determined by the sway direction. This simple algorithm allowed the “hybrid” postural system to maintain the dorsal-side-up orientation of the hindquarters when the platform was tilted by ± 20°. Thus, an important postural function, i.e., securing lateral stability during standing, can be restored in decerebrate rabbits with the GVS-based artificial feedback. We suggest that such a control system can compensate for the loss of lateral stability of various etiologies, and can be used for restoration of balance control in patients with impaired postural functions.


1998 ◽  
Vol 86 (3_suppl) ◽  
pp. 1155-1161 ◽  
Author(s):  
Marie-Françoise Tardy-Gervet ◽  
Alexandra Séverac-Cauquil

The present work reinvestigated the influence of bimastoidal galvanic vestibular stimulation (0.4 mA during 10 sec.) on subjective vertical. We tested the hypothesis that deviations are directed towards the anode side, like postural tilt evoked by galvanic vestibular stimulation. 15 subjects were instructed to orient vertically in darkness a light-rod during 3 experimental conditions of control, anode right, and anode left. The statistical analysis showed that the perception of the vertical was modified according to the experimental conditions and the subjects. Angular deviations occurred towards the anode side. The results are interpreted as a consequence of a modification of the central representation of the vertical or of ocular torsion directed towards the anode side and likely to induce an apparent displacement of the rod towards the cathode side.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yang Yang ◽  
Fang Pu ◽  
Xiaoning Lv ◽  
Shuyu Li ◽  
Jing Li ◽  
...  

Galvanic vestibular stimulation (GVS) can be used to study the body’s response to vestibular stimuli. This study aimed to investigate whether postural responses to GVS were different between pilots and the general populace. Bilateral bipolar GVS was applied with a constant-current profile to 12 pilots and 12 control subjects via two electrodes placed over the mastoid processes. Both GVS threshold and the center of pressure’s trajectory (COP’s trajectory) were measured. Position variability of COP during spontaneous body sway and peak displacement of COP during GVS-induced body sway were calculated in the medial-lateral direction. Spontaneous body sway was slight for all subjects, and there was no significant difference in the value of COP position variability between the pilots and controls. Both the GVS threshold and magnitude of GVS-induced body deviation were similar for different GVS polarities. GVS thresholds were similar between the two groups, but the magnitude of GVS-induced body deviation in the controls was significantly larger than that in the pilots. The pilots showed less GVS-induced body deviation, meaning that pilots may have a stronger ability to suppress vestibular illusions.


Sign in / Sign up

Export Citation Format

Share Document