scholarly journals Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper

2015 ◽  
Vol 113 (7) ◽  
pp. 2280-2288 ◽  
Author(s):  
Sarah Wirtssohn ◽  
Bernhard Ronacher

Temporal integration in the auditory system of locusts was quantified by presenting single clicks and click pairs while performing intracellular recordings. Auditory neurons were studied at three processing stages, which form a feed-forward network in the metathoracic ganglion. Receptor neurons and most first-order interneurons (“local neurons”) encode the signal envelope, while second-order interneurons (“ascending neurons”) tend to extract more complex, behaviorally relevant sound features. In different neuron types of the auditory pathway we found three response types: no significant temporal integration (some ascending neurons), leaky energy integration (receptor neurons and some local neurons), and facilitatory processes (some local and ascending neurons). The receptor neurons integrated input over very short time windows (<2 ms). Temporal integration on longer time scales was found at subsequent processing stages, indicative of within-neuron computations and network activity. These different strategies, realized at separate processing stages and in parallel neuronal pathways within one processing stage, could enable the grasshopper's auditory system to evaluate longer time windows and thus to implement temporal filters, while at the same time maintaining a high temporal resolution.

2019 ◽  
Author(s):  
Xiaoye Zuo ◽  
Christopher J. Honey ◽  
Morgan D. Barense ◽  
Davide Crombie ◽  
Kenneth A. Norman ◽  
...  

AbstractDefault network regions appear to integrate information over time windows of 30 seconds or more during narrative listening. Does this long-timescale capability require the hippocampus? Amnesic behavior suggests that the hippocampus may not be needed for online processing when input is continuous and semantically rich: amnesics can participate in conversations and tell stories spanning minutes, and when tested immediately on recently heard prose their performance is relatively preserved. We hypothesized that default network regions can integrate the semantically coherent information of a narrative across long time windows, even in the absence of the hippocampus. To test this prediction, we measured BOLD activity in the brain of a hippocampal amnesic patient (D. A.) and healthy control participants while they listened to a seven-minute narrative. The narrative was played either in its intact form, or as a paragraph-scrambled version, which has been previously shown to interfere with the long-range temporal dependencies in default network activity. In the intact story condition, D. A.’s moment-by-moment BOLD activity spatial patterns were similar to those of controls in low-level auditory cortex as well as in some high-level default network regions (including lateral and medial posterior parietal cortex). Moreover, as in controls, D. A.’s response patterns in medial and lateral posterior parietal cortex were disrupted when paragraphs of the story were presented in a shuffled order, suggesting that activity in these areas did depend on information from 30 seconds or more in the past. Together, these results suggest that some default network cortical areas can integrate information across long timescales, even in the absence of the hippocampus.


Author(s):  
Nuriye Yıldırım Gökay ◽  
Bülent Gündüz ◽  
Fatih Söke ◽  
Recep Karamert

Purpose The effects of neurological diseases on the auditory system have been a notable issue for investigators because the auditory pathway is closely associated with neural systems. The purposes of this study are to evaluate the efferent auditory system function and hearing quality in Parkinson's disease (PD) and to compare the findings with age-matched individuals without PD to present a perspective on aging. Method The study included 35 individuals with PD (mean age of 48.50 ± 8.00 years) and 35 normal-hearing peers (mean age of 49 ± 10 years). The following tests were administered for all participants: the first section of the Speech, Spatial and Qualities of Hearing Scale; pure-tone audiometry, speech audiometry, tympanometry, and acoustic reflexes; and distortion product otoacoustic emissions (DPOAEs) and contralateral suppression of DPOAEs. SPSS Version 25 was used for statistical analyses, and values of p < .05 were considered statistically significant. Results There were no statistically significant differences in the pure-tone audiometry thresholds and DPOAE responses between the individuals with PD and their normal-hearing peers ( p = .732). However, statistically significant differences were found between the groups in suppression levels of DPOAEs and hearing quality ( p < .05). In addition, a statistically significant and positive correlation was found between the amount of suppression at some frequencies and the Speech, Spatial and Qualities of Hearing Scale scores. Conclusions This study indicates that medial olivocochlear efferent system function and the hearing quality of individuals with PD were affected adversely due to the results of PD pathophysiology on the hearing system. For optimal intervention and follow-up, tasks related to hearing quality in daily life can also be added to therapies for PD.


2002 ◽  
Vol 22 (23) ◽  
pp. 10434-10448 ◽  
Author(s):  
Tim Gollisch ◽  
Hartmut Schütze ◽  
Jan Benda ◽  
Andreas V. M. Herz

2015 ◽  
Vol 32 (5) ◽  
pp. 445-459 ◽  
Author(s):  
Kyung Myun Lee ◽  
Erika Skoe ◽  
Nina Kraus ◽  
Richard Ashley

Acoustic periodicity is an important factor for discriminating consonant and dissonant intervals. While previous studies have found that the periodicity of musical intervals is temporally encoded by neural phase locking throughout the auditory system, how the nonlinearities of the auditory pathway influence the encoding of periodicity and how this effect is related to sensory consonance has been underexplored. By measuring human auditory brainstem responses (ABRs) to four diotically presented musical intervals with increasing degrees of dissonance, this study seeks to explicate how the subcortical auditory system transforms the neural representation of acoustic periodicity for consonant versus dissonant intervals. ABRs faithfully reflect neural activity in the brainstem synchronized to the stimulus while also capturing nonlinear aspects of auditory processing. Results show that for the most dissonant interval, which has a less periodic stimulus waveform than the most consonant interval, the aperiodicity of the stimulus is intensified in the subcortical response. The decreased periodicity of dissonant intervals is related to a larger number of nonlinearities (i.e., distortion products) in the response spectrum. Our findings suggest that the auditory system transforms the periodicity of dissonant intervals resulting in consonant and dissonant intervals becoming more distinct in the neural code than if they were to be processed by a linear auditory system.


1997 ◽  
Vol 106 (5) ◽  
pp. 385-390 ◽  
Author(s):  
Jean K. Moore ◽  
John K. Niparko ◽  
Michele R. Miller ◽  
Lucy M. Perazzo ◽  
Fred H. Linthicum

Degenerative change in the central auditory system was assessed in seven subjects with profound bilateral adult-onset deafness. The degree of transneuronal atrophy was determined by measuring cell size at three levels of the brain stem auditory pathway (anteroventral cochlear nucleus, medial superior olivary nucleus, and inferior colliculus). Within subjects, the relative degree of cell shrinkage was similar across all levels of the central pathway. Across subjects, the best neuronal preservation was seen in a case of viral labyrinthitis with 1 year of bilateral deafness and a near-normal population of cochlear ganglion cells. Reduction in cell size was greatest in cases of bacterial labyrinthitis or Scheibe degeneration with reduced populations of ganglion cells and longer periods of deafness. At the level of the cochlear nucleus, there was no consistent difference in cell size between the side stimulated by a functioning prosthetic device and the nonstimulated side.


2018 ◽  
Vol 35 (9) ◽  
pp. 1849-1863 ◽  
Author(s):  
Nathan J. M. Laxague ◽  
Brian K. Haus ◽  
David G. Ortiz-Suslow ◽  
Hans C. Graber

AbstractSurface wind stress is a crucial driver of upper-ocean processes, impacting air–sea gas flux, wind-wave development, and material transport. Conventional eddy covariance (EC) processing requires imposing a fixed averaging window on the wind velocity time series in order to estimate the downward flux of momentum. While this method has become the standard means of directly measuring the wind stress, the use of a fixed averaging interval inherently constrains one’s ability to resolve transient signals that may have net effects on the air–sea interactions. Here we utilize the wavelet transform to develop a new technique for directly quantifying the wind stress magnitude from the wavelet coscalogram products. The time averages of these products evaluated at the scale of maximum amplitude are highly correlated with the EC estimates (R2 = 0.99; 5-min time windows), suggesting that stress is particularly sensitive to the dominant turbulent eddies. By taking advantage of the new method’s high temporal resolution, transient wind forcing and its dominant scales may be explicitly computed and analyzed. This technique will allow for more general investigations into air–sea dynamics under nonstationary or spatially inhomogeneous conditions, such as within the nearshore region.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Leila Drissi-Daoudi ◽  
Adrien Doerig ◽  
Michael H. Herzog

Abstract Sensory information must be integrated over time to perceive, for example, motion and melodies. Here, to study temporal integration, we used the sequential metacontrast paradigm in which two expanding streams of lines are presented. When a line in one stream is offset observers perceive all other lines to be offset too, even though they are straight. When more lines are offset the offsets integrate mandatorily, i.e., observers cannot report the individual offsets. We show that mandatory integration lasts for up to 450 ms, depending on the observer. Importantly, integration occurs only when offsets are presented within a discrete window of time. Even stimuli that are in close spatio-temporal proximity do not integrate if they are in different windows. A window of integration starts with stimulus onset and integration in the next window has similar characteristics. We present a two-stage computational model based on discrete time windows that captures these effects.


2019 ◽  
Vol 30 (4) ◽  
pp. 2586-2599 ◽  
Author(s):  
Stitipragyan Bhumika ◽  
Mari Nakamura ◽  
Patricia Valerio ◽  
Magdalena Solyga ◽  
Henrik Lindén ◽  
...  

Abstract Neuronal circuits are shaped by experience during time windows of increased plasticity in postnatal development. In the auditory system, the critical period for the simplest sounds—pure frequency tones—is well defined. Critical periods for more complex sounds remain to be elucidated. We used in vivo electrophysiological recordings in the mouse auditory cortex to demonstrate that passive exposure to frequency modulated sweeps (FMS) from postnatal day 31 to 38 leads to long-term changes in the temporal representation of sweep directions. Immunohistochemical analysis revealed a decreased percentage of layer 4 parvalbumin-positive (PV+) cells during this critical period, paralleled with a transient increase in responses to FMS, but not to pure tones. Preventing the PV+ cell decrease with continuous white noise exposure delayed the critical period onset, suggesting a reduction in inhibition as a mechanism for this plasticity. Our findings shed new light on the dependence of plastic windows on stimulus complexity that persistently sculpt the functional organization of the auditory cortex.


2020 ◽  
Vol 30 (11) ◽  
pp. 5667-5685 ◽  
Author(s):  
Isabel Del Pino ◽  
Chiara Tocco ◽  
Elia Magrinelli ◽  
Andrea Marcantoni ◽  
Celeste Ferraguto ◽  
...  

Abstract The formation of functional cortical maps in the cerebral cortex results from a timely regulated interaction between intrinsic genetic mechanisms and electrical activity. To understand how transcriptional regulation influences network activity and neuronal excitability within the neocortex, we used mice deficient for Nr2f1 (also known as COUP-TFI), a key determinant of primary somatosensory (S1) area specification during development. We found that the cortical loss of Nr2f1 impacts on spontaneous network activity and synchronization of S1 cortex at perinatal stages. In addition, we observed alterations in the intrinsic excitability and morphological features of layer V pyramidal neurons. Accordingly, we identified distinct voltage-gated ion channels regulated by Nr2f1 that might directly influence intrinsic bioelectrical properties during critical time windows of S1 cortex specification. Altogether, our data suggest a tight link between Nr2f1 and neuronal excitability in the developmental sequence that ultimately sculpts the emergence of cortical network activity within the immature neocortex.


Sign in / Sign up

Export Citation Format

Share Document