scholarly journals Feature integration within discrete time windows

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Leila Drissi-Daoudi ◽  
Adrien Doerig ◽  
Michael H. Herzog

Abstract Sensory information must be integrated over time to perceive, for example, motion and melodies. Here, to study temporal integration, we used the sequential metacontrast paradigm in which two expanding streams of lines are presented. When a line in one stream is offset observers perceive all other lines to be offset too, even though they are straight. When more lines are offset the offsets integrate mandatorily, i.e., observers cannot report the individual offsets. We show that mandatory integration lasts for up to 450 ms, depending on the observer. Importantly, integration occurs only when offsets are presented within a discrete window of time. Even stimuli that are in close spatio-temporal proximity do not integrate if they are in different windows. A window of integration starts with stimulus onset and integration in the next window has similar characteristics. We present a two-stage computational model based on discrete time windows that captures these effects.

2017 ◽  
Author(s):  
Jiaming Cao ◽  
Pulkit Grover

AbstractUsing a systematic computational and modeling framework, we provide a novel Spatio-Temporal Interference-based stiMULation focUsing Strategy (STIMULUS) for high spatial precision noninvasive neurostimulation deep inside the brain. To do so, we first replicate the results of the recently proposed temporal interference (TI) stimulation (which was only tested in-vivo) in a computational model based on a Hodgkin-Huxley model for neurons and a model of current dispersion in the head. Using this computational model, we obtain a nontrivial extension of the 2-electrode-pair TI proposed originally to multielectrode TI (> 2 electrode pairs) that yields significantly higher spatial precision. To further improve precision, we develop STIMULUS techniques for generating spatial interference patterns in conjunction with temporal interference, and demonstrate strict and significant improvements over multielectrode TI. Finally, we utilize the adaptivity that is inherent in STIMULUS to create multisite neurostimulation patterns that can be dynamically steered over time.


2019 ◽  
Author(s):  
Malte Wöstmann ◽  
Mohsen Alavash ◽  
Jonas Obleser

AbstractIn principle, selective attention is the net result of target selection and distractor suppression. The way in which both mechanisms are implemented neurally has remained contested. Neural oscillatory power in the alpha frequency band (~10 Hz) has been implicated in the selection of to-be-attended targets, but there is lack of empirical evidence for its involvement in the suppression of to-be-ignored distractors. Here, we use electroencephalography (EEG) recordings of N = 33 human participants (males and females) to test the pre-registered hypothesis that alpha power directly relates to distractor suppression and thus operates independently from target selection. In an auditory spatial pitch discrimination task, we modulated the location (left vs right) of either a target or a distractor tone sequence, while fixing the other in the front. When the distractor was fixed in the front, alpha power relatively decreased contralaterally to the target and increased ipsilaterally. Most importantly, when the target was fixed in the front, alpha lateralization reversed in direction for the suppression of distractors on the left versus right. These data show that target-selection–independent alpha power modulation is involved in distractor suppression. While both lateralized alpha responses for selection and for suppression proved reliable, they were uncorrelated and distractor-related alpha power emerged from more anterior, frontal cortical regions. Lending functional significance to suppression-related alpha oscillations, alpha lateralization at the individual, single-trial level was predictive of behavioral accuracy. These results fuel a renewed look at neurobiological accounts of selection-independent suppressive filtering in attention.Significance statementAlthough well-established models of attention rest on the assumption that irrelevant sensory information is filtered out, the neural implementation of such a filter mechanism is unclear. Using an auditory attention task that decouples target selection from distractor suppression, we demonstrate that two sign-reversed lateralized alpha responses reflect target selection versus distractor suppression. Critically, these alpha responses are reliable, independent of each other, and generated in more anterior, frontal regions for suppression versus selection. Prediction of single-trial task performance from alpha modulation after stimulus onset agrees with the view that alpha modulation bears direct functional relevance as a neural implementation of attention. Results demonstrate that the neurobiological foundation of attention implies a selection-independent alpha oscillatory mechanism to suppress distraction.


2014 ◽  
Vol 369 (1637) ◽  
pp. 20120467 ◽  
Author(s):  
Stefano Panzeri ◽  
Robin A. A. Ince ◽  
Mathew E. Diamond ◽  
Christoph Kayser

The precise timing of action potentials of sensory neurons relative to the time of stimulus presentation carries substantial sensory information that is lost or degraded when these responses are summed over longer time windows. However, it is unclear whether and how downstream networks can access information in precise time-varying neural responses. Here, we review approaches to test the hypothesis that the activity of neural populations provides the temporal reference frames needed to decode temporal spike patterns. These approaches are based on comparing the single-trial stimulus discriminability obtained from neural codes defined with respect to network-intrinsic reference frames to the discriminability obtained from codes defined relative to the experimenter's computer clock. Application of this formalism to auditory, visual and somatosensory data shows that information carried by millisecond-scale spike times can be decoded robustly even with little or no independent external knowledge of stimulus time. In cortex, key components of such intrinsic temporal reference frames include dedicated neural populations that signal stimulus onset with reliable and precise latencies, and low-frequency oscillations that can serve as reference for partitioning extended neuronal responses into informative spike patterns.


1999 ◽  
Vol 4 (4) ◽  
pp. 205-218 ◽  
Author(s):  
David Magnusson

A description of two cases from my time as a school psychologist in the middle of the 1950s forms the background to the following question: Has anything important happened since then in psychological research to help us to a better understanding of how and why individuals think, feel, act, and react as they do in real life and how they develop over time? The studies serve as a background for some general propositions about the nature of the phenomena that concerns us in developmental research, for a summary description of the developments in psychological research over the last 40 years as I see them, and for some suggestions about future directions.


2013 ◽  
Vol 4 (2) ◽  
pp. 151-156 ◽  
Author(s):  
G. Kozma ◽  
E. Molnár ◽  
K. Czimre ◽  
J. Pénzes

Abstract In our days, energy issues belong to the most important problems facing the Earth and the solution may be expected partly from decreasing the amount of the energy used and partly from the increased utilisation of renewable energy resources. A substantial part of energy consumption is related to buildings and includes, inter alia, the use for cooling/heating, lighting and cooking purposes. In the view of the above, special attention has been paid to minimising the energy consumption of buildings since the late 1980s. Within the framework of that, the passive house was created, a building in which the thermal comfort can be achieved solely by postheating or postcooling of the fresh air mass without a need for recirculated air. The aim of the paper is to study the changes in the construction of passive houses over time. In addition, the differences between the geographical locations and the observable peculiarities with regard to the individual building types are also presented.


2020 ◽  
Author(s):  
Christopher James Hopwood ◽  
Ted Schwaba ◽  
Wiebke Bleidorn

Personal concerns about climate change and the environment are a powerful motivator of sustainable behavior. People’s level of concern varies as a function of a variety of social and individual factors. Using data from 58,748 participants from a nationally representative German sample, we tested preregistered hypotheses about factors that impact concerns about the environment over time. We found that environmental concerns increased modestly from 2009-2017 in the German population. However, individuals in middle adulthood tended to be more concerned and showed more consistent increases in concern over time than younger or older people. Consistent with previous research, Big Five personality traits were correlated with environmental concerns. We present novel evidence that increases in concern were related to increases in the personality traits neuroticism and openness to experience. Indeed, changes in openness explained roughly 50% of the variance in changes in environmental concerns. These findings highlight the importance of understanding the individual level factors associated with changes in environmental concerns over time, towards the promotion of more sustainable behavior at the individual level.


2021 ◽  
Vol 13 (2) ◽  
pp. 1-27
Author(s):  
A. Khalemsky ◽  
R. Gelbard

In dynamic and big data environments the visualization of a segmentation process over time often does not enable the user to simultaneously track entire pieces. The key points are sometimes incomparable, and the user is limited to a static visual presentation of a certain point. The proposed visualization concept, called ExpanDrogram, is designed to support dynamic classifiers that run in a big data environment subject to changes in data characteristics. It offers a wide range of features that seek to maximize the customization of a segmentation problem. The main goal of the ExpanDrogram visualization is to improve comprehensiveness by combining both the individual and segment levels, illustrating the dynamics of the segmentation process over time, providing “version control” that enables the user to observe the history of changes, and more. The method is illustrated using different datasets, with which we demonstrate multiple segmentation parameters, as well as multiple display layers, to highlight points such as new trend detection, outlier detection, tracking changes in original segments, and zoom in/out for more/less detail. The datasets vary in size from a small one to one of more than 12 million records.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3099
Author(s):  
V. Javier Traver ◽  
Judith Zorío ◽  
Luis A. Leiva

Temporal salience considers how visual attention varies over time. Although visual salience has been widely studied from a spatial perspective, its temporal dimension has been mostly ignored, despite arguably being of utmost importance to understand the temporal evolution of attention on dynamic contents. To address this gap, we proposed Glimpse, a novel measure to compute temporal salience based on the observer-spatio-temporal consistency of raw gaze data. The measure is conceptually simple, training free, and provides a semantically meaningful quantification of visual attention over time. As an extension, we explored scoring algorithms to estimate temporal salience from spatial salience maps predicted with existing computational models. However, these approaches generally fall short when compared with our proposed gaze-based measure. Glimpse could serve as the basis for several downstream tasks such as segmentation or summarization of videos. Glimpse’s software and data are publicly available.


Sign in / Sign up

Export Citation Format

Share Document