Don't tell anyone: the importance of no-report paradigms in neuroscience of consciousness

Author(s):  
Maria Del Vecchio

The neural correlates of perceptual awareness are usually investigated by comparing experimental conditions in which subjects are aware or not aware of the delivered stimulus. This, however implies that subjects report their experience, possibly biasing the neural responses with the post-perceptual processes involved. This Neuro Forum article reviews evidence from an electroencephalography (EEG) study by Cohen and colleagues (Cohen M. et al. Journal of Neuroscience 40 (25) 4925-4935) addressing the importance of no-report paradigms in the neuroscience of consciousness. In particular, authors shows of P3b, one of the proposed canonical "signatures" of the conscious processing, is strongly elicited only when subjects have to report their experience, proposing a reconsideration in the approach to the neuroscience of consciousness.

Author(s):  
Michael A. Cohen ◽  
Kevin Ortego ◽  
Andrew Kyroudis ◽  
Michael Pitts

AbstractTo identify the neural correlates of perceptual awareness, researchers often compare the differences in neural activation between conditions in which an observer is or is not aware of a stimulus. While intuitive, this approach often contains a critical limitation: In order to link brain activity with perceptual awareness, observers traditionally report the contents of their perceptual experience. However, relying on observers’ reports is problematic because it is difficult to know if the neural responses being measured are associated with conscious perception or with post-perceptual processes involved in the reporting task (i.e., working memory, decision-making, etc.). To address this issue, we combined a standard visual masking paradigm with a recently developed “no-report” paradigm in male/female human participants. In the visual masking paradigm, observers saw images of animals and objects that were visible or invisible depending on their proximity to masks. Meanwhile, on half of the trials, observers reported the contents of their perceptual experience (i.e., report condition), while on the other half of trials they refrained from reporting about their experiences (i.e., no-report condition). We used electroencephalography (EEG) to examine how visibility interacts with reporting by measuring the P3b event related potential (ERP), one of the proposed canonical “signatures” of conscious processing. Overall, we found a robust P3b in the report condition, but no P3b whatsoever in the no-report condition. This finding suggests that the P3b itself is not a neural signature of conscious processing and highlights the importance of carefully distinguishing the neural correlates of perceptual awareness from post-perceptual processing.Significance statementWhat are the neural signatures that differentiate conscious and unconscious processing in the brain? Perhaps the most well-established candidate signature is the P3b event-related potential (ERP), a late slow wave that appears when observers are aware of a stimulus, but disappears when a stimulus fails to reach awareness. Here, however, we found that the P3b does not track what observers are perceiving but instead tracks what observers are reporting. When observers are aware of simple visual stimuli, the P3b is nowhere to be found unless observers are reporting the contents of their experience. These results challenge the well-established notion of the P3b as a neural marker of awareness and highlight the need for new approaches to the neuroscience of consciousness.


2010 ◽  
Vol 22 (11) ◽  
pp. 2638-2651 ◽  
Author(s):  
Joel L. Voss ◽  
Heather D. Lucas ◽  
Ken A. Paller

Familiarity and recollection are qualitatively different explicit-memory phenomena evident during recognition testing. Investigations of the neurocognitive substrates of familiarity and recollection, however, have typically disregarded implicit-memory processes likely to be engaged during recognition tests. We reasoned that differential neural responses to old and new items in a recognition test may reflect either explicit or implicit memory. Putative neural correlates of familiarity in prior experiments, for example, may actually reflect contamination by implicit memory. In two experiments, we used obscure words that subjects could not formally define to tease apart electrophysiological correlates of familiarity and one form of implicit memory, conceptual priming. In Experiment 1, conceptual priming was observed for words only if they elicited meaningful associations. In Experiment 2, two distinct neural signals were observed in conjunction with familiarity-based recognition: late posterior potentials for words that both did and did not elicit meaningful associations and FN400 potentials only for the former. Given that symbolic meaning is a prerequisite for conceptual priming, the combined results specifically link late posterior potentials and FN400 potentials with familiarity and conceptual priming, respectively. These findings contradict previous interpretations of FN400 potentials as generic signals of familiarity and show that repeated stimuli in recognition tests can engender facilitated processing of conceptual information in addition to retrieval processing that leads to the awareness of memory retrieval. The different characteristics of the electrical markers of these two types of process further underscore the biological validity of the distinction between implicit memory and explicit memory.


2015 ◽  
Vol 27 (4) ◽  
pp. 832-841 ◽  
Author(s):  
Amanda K. Robinson ◽  
Judith Reinhard ◽  
Jason B. Mattingley

Sensory information is initially registered within anatomically and functionally segregated brain networks but is also integrated across modalities in higher cortical areas. Although considerable research has focused on uncovering the neural correlates of multisensory integration for the modalities of vision, audition, and touch, much less attention has been devoted to understanding interactions between vision and olfaction in humans. In this study, we asked how odors affect neural activity evoked by images of familiar visual objects associated with characteristic smells. We employed scalp-recorded EEG to measure visual ERPs evoked by briefly presented pictures of familiar objects, such as an orange, mint leaves, or a rose. During presentation of each visual stimulus, participants inhaled either a matching odor, a nonmatching odor, or plain air. The N1 component of the visual ERP was significantly enhanced for matching odors in women, but not in men. This is consistent with evidence that women are superior in detecting, discriminating, and identifying odors and that they have a higher gray matter concentration in olfactory areas of the OFC. We conclude that early visual processing is influenced by olfactory cues because of associations between odors and the objects that emit them, and that these associations are stronger in women than in men.


2021 ◽  
Author(s):  
Moshe Shay Ben-Haim ◽  
Olga Dal Monte ◽  
Nicholas A. Fagan ◽  
Yarrow Dunham ◽  
Ran Hassin ◽  
...  

Scholars have long debated whether animals, which display impressive intelligent behaviors, are consciously aware or not. Yet, because many complex human behaviors and high-level functions can be performed without conscious awareness, it was long considered impossible to untangle whether animals are aware, or just conditionally or non-consciously behaving. Here, we developed a novel empirical approach to address this question. We harnessed a well-established crossover double dissociation between non-conscious and conscious processing, in which people perform in completely opposite ways when they are aware of stimuli versus when they are not. To date, no one has explored if similar performance dissociations exist in a non-human species. In a series of seven experiments, we first established these signatures in humans using both known and newly developed non-verbal double dissociation tasks, and then identified similar signatures in rhesus monkeys (Macaca mulatta). These results provide robust evidence for two distinct modes of processing in non-human primates. This empirical approach makes it feasible to disentangle conscious visual awareness from non-conscious processing in non-human species; hence, it can be used to strip away ambiguity when exploring the processes governing intelligent behavior across the animal kingdom. Taken together, these results strongly support the existence of both non-conscious processing as well as functional human-like visual awareness in non-human animals.


Author(s):  
Matthew J Davidson ◽  
Will Mithen ◽  
Hinze Hogendoorn ◽  
Jeroen J.A. van Boxtel ◽  
Naotsugu Tsuchiya

AbstractAlthough visual awareness of an object typically increases neural responses, we identify a neural response that increases prior to perceptual disappearances, and that scales with the amount of invisibility reported during perceptual filling-in. These findings challenge long-held assumptions regarding the neural correlates of consciousness and entrained visually evoked potentials, by showing that the strength of stimulus-specific neural activity can encode the conscious absence of a stimulus.Significance StatementThe focus of attention and the contents of consciousness frequently overlap. Yet what happens if this common correlation is broken? To test this, we asked human participants to attend and report on the invisibility of four visual objects which seemed to disappear, yet actually remained on screen. We found that neural activity increased, rather than decreased, when targets became invisible. This coincided with measures of attention that also increased when stimuli disappeared. Together, our data support recent suggestions that attention and conscious perception are distinct and separable. In our experiment, neural measures more strongly follow attention.


PLoS Biology ◽  
2008 ◽  
Vol 6 (6) ◽  
pp. e138 ◽  
Author(s):  
Alexander Gutschalk ◽  
Christophe Micheyl ◽  
Andrew J Oxenham

2018 ◽  
Author(s):  
Nikolas A. Francis ◽  
Susanne Radtke-Schuller ◽  
Jonathan B. Fritz ◽  
Shihab A. Shamma

AbstractTask-related plasticity in the brain is triggered by changes in the behavioral meaning of sounds. We investigated plasticity in ferret dorsolateral frontal cortex (dlFC) during an auditory reversal task to study the neural correlates of proactive interference, i.e., perseveration of previously learned behavioral meanings that are no longer task-appropriate. Although the animals learned the task, target recognition decreased after reversals, indicating proactive interference. Frontal cortex responsiveness was consistent with previous findings that dlFC encodes the behavioral meaning of sounds. However, the neural responses observed here were more complex. For example, target responses were strongly enhanced, while responses to non-target tones and noises were weakly enhanced and strongly suppressed, respectively. Moreover, dlFC responsiveness reflected the proactive interference observed in behavior: target responses decreased after reversals, most significantly during incorrect behavioral responses. These findings suggest that the weak representation of behavioral meaning in dlFC may be a neural correlate of proactive interference.Significance StatementNeural activity in prefrontal cortex (PFC) is believed to enable cognitive flexibility during sensory-guided behavior. Since PFC encodes the behavioral meaning of sensory events, we hypothesized that weak representation of behavioral meaning in PFC may limit cognitive flexibility. To test this hypothesis, we recorded neural activity in ferret PFC, while ferrets performed an auditory reversal task in which the behavioral meanings of sounds were reversed during experiments. The reversal task enabled us study PFC responses during proactive interference, i.e. perseveration of previously learned behavioral meanings that are no longer task-appropriate. We found that task performance errors increased after reversals while PFC representation of behavioral meaning diminished. Our findings suggest that proactive interference may occur when PFC forms weak sensory-cognitive associations.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260728
Author(s):  
Carlota Pagès-Portabella ◽  
Mila Bertolo ◽  
Juan M. Toro

In western music, harmonic expectations can be fulfilled or broken by unexpected chords. Musical irregularities in the absence of auditory deviance elicit well-studied neural responses (e.g. ERAN, P3, N5). These responses are sensitive to schematic expectations (induced by syntactic rules of chord succession) and veridical expectations about predictability (induced by experimental regularities). However, the cognitive and sensory contributions to these responses and their plasticity as a result of musical training remains under debate. In the present study, we explored whether the neural processing of pure acoustic violations is affected by schematic and veridical expectations. Moreover, we investigated whether these two factors interact with long-term musical training. In Experiment 1, we registered the ERPs elicited by dissonant clusters placed either at the middle or the ending position of chord cadences. In Experiment 2, we presented to the listeners with a high proportion of cadences ending in a dissonant chord. In both experiments, we compared the ERPs of musicians and non-musicians. Dissonant clusters elicited distinctive neural responses (an early negativity, the P3 and the N5). While the EN was not affected by syntactic rules, the P3a and P3b were larger for dissonant closures than for middle dissonant chords. Interestingly, these components were larger in musicians than in non-musicians, while the N5 was the opposite. Finally, the predictability of dissonant closures in our experiment did not modulate any of the ERPs. Our study suggests that, at early time windows, dissonance is processed based on acoustic deviance independently of syntactic rules. However, at longer latencies, listeners may be able to engage integration mechanisms and further processes of attentional and structural analysis dependent on musical hierarchies, which are enhanced in musicians.


Sign in / Sign up

Export Citation Format

Share Document