Endogenous Zinc Inhibits GABAA Receptors in a Hippocampal Pathway

2004 ◽  
Vol 91 (2) ◽  
pp. 1091-1096 ◽  
Author(s):  
Arnaud Ruiz ◽  
Matthew C. Walker ◽  
Ruth Fabian-Fine ◽  
Dimitri M. Kullmann

Depending on their subunit composition, GABAA receptors can be highly sensitive to Zn2+. Although a pathological role for Zn2+-mediated inhibition of GABAA receptors has been postulated, no direct evidence exists that endogenous Zn2+ can modulate GABAergic signaling in the brain. A possible explanation is that Zn2+ is mainly localized to a subset of glutamatergic synapses. Hippocampal mossy fibers are unusual in that they are glutamatergic but have also been reported to contain GABA and Zn2+. Here, we show, using combined Timm's method and post-embedding immunogold, that the same mossy fiber varicosities can contain both GABA and Zn2+. Chelating Zn2+ with either calcium-saturated EDTA or N,N,N′ ,N′-tetrakis (2-pyridylmethyl)ethylenediamine had no effect on stratum-radiatum-evoked inhibitory postsynaptic currents (IPSCs), but enhanced IPSCs evoked by stimuli designed to recruit dentate granule cells. We also show that IPSCs recorded in CA3 pyramidal neurons in acute hippocampal slices are depressed by exogenous Zn2+. This depression was of similar amplitude whether the IPSCs were evoked by stimulation in s. radiatum (to recruit local interneurons) or in the s. granulosum of the dentate gyrus (to recruit mossy fibers). These results show for the first time that GABAergic IPSCs can be modulated by endogenous Zn2+ and are consistent with GABA release at Zn2+-containing mossy fiber synapses.

2014 ◽  
Vol 112 (2) ◽  
pp. 263-275 ◽  
Author(s):  
Hayley A. Mattison ◽  
Ashish A. Bagal ◽  
Michael Mohammadi ◽  
Nisha S. Pulimood ◽  
Christian G. Reich ◽  
...  

GluA2-lacking, calcium-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) have unique properties, but their presence at excitatory synapses in pyramidal cells is controversial. We have tested certain predictions of the model that such receptors are present in CA1 cells and show here that the polyamine spermine, but not philanthotoxin, causes use-dependent inhibition of synaptically evoked excitatory responses in stratum radiatum, but not s. oriens, in cultured and acute hippocampal slices. Stimulation of single dendritic spines by photolytic release of caged glutamate induced an N-methyl-d-aspartate receptor-independent, use- and spermine-sensitive calcium influx only at apical spines in cultured slices. Bath application of glutamate also triggered a spermine-sensitive influx of cobalt into CA1 cell dendrites in s. radiatum. Responses of single apical, but not basal, spines to photostimulation displayed prominent paired-pulse facilitation (PPF) consistent with use-dependent relief of cytoplasmic polyamine block. Responses at apical dendrites were diminished, and PPF was increased, by spermine. Intracellular application of pep2m, which inhibits recycling of GluA2-containing AMPARs, reduced apical spine responses and increased PPF. We conclude that some calcium-permeable, polyamine-sensitive AMPARs, perhaps lacking GluA2 subunits, are present at synapses on apical dendrites of CA1 pyramidal cells, which may allow distinct forms of synaptic plasticity and computation at different sets of excitatory inputs.


1997 ◽  
Vol 78 (3) ◽  
pp. 1662-1668 ◽  
Author(s):  
Yuko Sekino ◽  
Kunihiko Obata ◽  
Manabu Tanifuji ◽  
Makoto Mizuno ◽  
Jin Murayama

Sekino, Yuko, Kunihiko Obata, Manabu Tanifuji, Makoto Mizuno, and Jin Murayama. Delayed signal propagation via CA2 in rat hippocampal slices revealed by optical recording. J. Neurophysiol. 78: 1662–1668, 1997. Signal propagation from mossy fibers to CA1 neurons was investigated in rat hippocampal slices by a combination of electrical and optical recordings. The slices were prepared by oblique sectioning of the middle part of the hippocampus to preserve fiber connections. The mossy fibers were stimulated to induce population spikes (PSs) and excitatory postsynaptic potentials in the middle part of the CA1 region. Latencies of maximal PSs in CA1 varied widely among slices; they ranged from 7 to 13.5 ms, with two maxima at 9 and 11.5 ms. The fastest PSs probably are evoked by the Schaffer collaterals that connect the CA3 and CA1 regions in the well-known trisynaptic circuit. However, the slower PSs suggest the existence of additional delayed inputs. To determine the source of the delayed input, slices were stained with a voltage-sensitive dye, RH482, and the optical signals relevant to membrane potential changes were detected by a high-resolution optical imaging system. Optical recording of responses to mossy fiber stimulation indicated two distinct types of signal propagation from CA3 to CA1. In preparations evincing the fast type of propagation, signals spread to CA1 within 7.2 ms after the mossy fiber stimulation. During such propagation, activity flowed directly from CA3 to the stratum radiatum of CA1. Other preparations illustrated slow signal propagation, in which optical signals were generated in CA2 before spreading to CA1. During such slow signal transmission, activity persisted in CA2 and its surrounding area for 3 ms before propagating to the strata radiatum and oriens in CA1. In such cases, CA1 activity was detected within 10.8 ms of mossy fiber stimulation. In some slices, a mixture of the fast and slow propagation patterns was observed, indicating that these two transmission modes can coexist. Our data reveal that CA2 neurons can transmit delayed excitatory signals to CA1 neurons. We therefore conclude that consideration of electrical signal propagation through the hippocampus should include flow through the CA2 region in addition to the traditional dentate gyrus–CA3–CA1 trisynaptic circuit.


1994 ◽  
Vol 71 (1) ◽  
pp. 204-215 ◽  
Author(s):  
J. L. Gaiarsa ◽  
L. Zagrean ◽  
Y. Ben-Ari

1. The effects of unilateral gamma-ray irradiation at birth on the properties of adult CA3 pyramidal neurons have been studied in hippocampal slices. 2. Neonatal gamma-ray irradiation reduced by 80% the number of granule cells and prevented the formation of mossy fiber synapses without reducing the number of CA3 pyramidal cells. The destruction of the mossy fibers was also confirmed with extracellular recordings. 3. Excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) evoked by stimulation of the stratum radiatum had similar properties in nonirradiated and irradiated hippocampi: the EPSP reversed polarity near 0 mV, was reduced in amplitude by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM) and D(-)-2-amino-5-phosphonovalerate (APV, 50 microM); the fast and slow IPSPs reversed at -75 and -100 mV, were blocked by bicuculline (10 microM), and reduced by phaclofen (0.5 mM), respectively. 4. Bath application of kainate (300–500 nM) evoked epileptiform activity in 81.5% of nonirradiated hippocampal CA3 regions and only in 29% of the irradiated CA3 regions. In contrast, bath application of high potassium (7 mM) and bicuculline (10 microM) generated spontaneous and evoked epileptiform activity in both nonirradiated and irradiated CA3 regions. 5. In nonirradiated and irradiated CA3 regions, kainate (200–300 nM) reduced the amplitude of the fast and slow IPSPs, reduced spike accommodation, and increased the duration of the action potential generated by a depolarizing pulse. 6. The postsynaptic responses of CA3 neurons to bath application of glutamatergic agonists were similar in nonirradiated and irradiated hippocampi in terms of amplitude, reversal potential, and pharmacology. 7. It is concluded that the most conspicuous effect of neonatal gamma-ray irradiation is to prevent the epileptic action of kainate. We propose that kainate generates epileptiform activity in the intact CA3 region by activating high-affinity binding sites located on the mossy fiber terminals.


2019 ◽  
Vol 116 (22) ◽  
pp. 10994-10999
Author(s):  
William D. Hendricks ◽  
Gary L. Westbrook ◽  
Eric Schnell

In temporal lobe epilepsy, sprouting of hippocampal mossy fiber axons onto dentate granule cell dendrites creates a recurrent excitatory network. However, unlike mossy fibers projecting to CA3, sprouted mossy fiber synapses depress upon repetitive activation. Thus, despite their proximal location, relatively large presynaptic terminals, and ability to excite target neurons, the impact of sprouted mossy fiber synapses on hippocampal hyperexcitability is unclear. We find that despite their short-term depression, single episodes of sprouted mossy fiber activation in hippocampal slices initiated bursts of recurrent polysynaptic excitation. Consistent with a contribution to network hyperexcitability, optogenetic activation of sprouted mossy fibers reliably triggered action potential firing in postsynaptic dentate granule cells after single light pulses. This pattern resulted in a shift in network recruitment dynamics to an “early detonation” mode and an increased probability of release compared with mossy fiber synapses in CA3. A lack of tonic adenosine-mediated inhibition contributed to the higher probability of glutamate release, thus facilitating reverberant circuit activity.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yuanyuan Xu ◽  
Mike T. Lin ◽  
Xiang-ming Zha

Abstract Increased neural activities reduced pH at the synaptic cleft and interstitial spaces. Recent studies have shown that protons function as a neurotransmitter. However, it remains unclear whether protons signal through a metabotropic receptor to regulate synaptic function. Here, we showed that GPR68, a proton-sensitive GPCR, exhibited wide expression in the hippocampus, with higher expression observed in CA3 pyramidal neurons and dentate granule cells. In organotypic hippocampal slice neurons, ectopically expressed GPR68-GFP was present in dendrites, dendritic spines, and axons. Recordings in hippocampal slices isolated from GPR68−/− mice showed a reduced fiber volley at the Schaffer collateral-CA1 synapses, a reduced long-term potentiation (LTP), but unaltered paired-pulse ratio. In a step-through passive avoidance test, GPR68−/− mice exhibited reduced avoidance to the dark chamber. These findings showed that GPR68 contributes to hippocampal LTP and aversive fear memory.


2010 ◽  
Vol 104 (2) ◽  
pp. 627-640 ◽  
Author(s):  
Brian E. Kalmbach ◽  
Tatsuya Ohyama ◽  
Michael D. Mauk

Trace eyelid conditioning is a form of associative learning that requires several forebrain structures and cerebellum. Previous work suggests that at least two conditioned stimulus (CS)-driven signals are available to the cerebellum via mossy fiber inputs during trace conditioning: one driven by and terminating with the tone and a second driven by medial prefrontal cortex (mPFC) that persists through the stimulus-free trace interval to overlap in time with the unconditioned stimulus (US). We used electric stimulation of mossy fibers to determine whether this pattern of dual inputs is necessary and sufficient for cerebellar learning to express normal trace eyelid responses. We find that presenting the cerebellum with one input that mimics persistent activity observed in mPFC and the lateral pontine nuclei during trace eyelid conditioning and another that mimics tone-elicited mossy fiber activity is sufficient to produce responses whose properties quantitatively match trace eyelid responses using a tone. Probe trials with each input delivered separately provide evidence that the cerebellum learns to respond to the mPFC-like input (that overlaps with the US) and learns to suppress responding to the tone-like input (that does not). This contributes to precisely timed responses and the well-documented influence of tone offset on the timing of trace responses. Computer simulations suggest that the underlying cerebellar mechanisms involve activation of different subsets of granule cells during the tone and during the stimulus-free trace interval. These results indicate that tone-driven and mPFC-like inputs are necessary and sufficient for the cerebellum to learn well-timed trace conditioned responses.


2000 ◽  
Vol 83 (4) ◽  
pp. 2421-2430 ◽  
Author(s):  
Yo Otsu ◽  
Eiichi Maru ◽  
Hisayuki Ohata ◽  
Ichiro Takashima ◽  
Riichi Kajiwara ◽  
...  

In the epileptic hippocampus, newly sprouted mossy fibers are considered to form recurrent excitatory connections to granule cells in the dentate gyrus and thereby increase seizure susceptibility. To study the effects of mossy fiber sprouting on neural activity in individual lamellae of the dentate gyrus, we used high-speed optical recording to record signals from voltage-sensitive dye in hippocampal slices prepared from kainate-treated epileptic rats (KA rats). In 14 of 24 slices from KA rats, hilar stimulation evoked a large depolarization in almost the entire molecular layer in which granule cell apical dendrites are located. The signals were identified as postsynaptic responses because of their dependence on extracellular Ca2+. The depolarization amplitude was largest in the inner molecular layer (the target area of sprouted mossy fibers) and declined with increasing distance from the granule cell layer. In the inner molecular layer, a good correlation was obtained between depolarization size and the density of mossy fiber terminals detected by Timm staining methods. Blockade of GABAergic inhibition by bicuculline enlarged the depolarization in granule cell dendrites. Our data indicate that mossy fiber sprouting results in a large and prolonged synaptic depolarization in an extensive dendritic area and that the enhanced GABAergic inhibition partly masks the synaptic depolarization. However, despite the large dendritic excitation induced by the sprouted mossy fibers, seizurelike activity of granule cells was never observed, even when GABAergic inhibition was blocked. Therefore, mossy fiber sprouting may not play a critical role in epileptogenesis.


2002 ◽  
Vol 87 (2) ◽  
pp. 1132-1137 ◽  
Author(s):  
Yong Liang ◽  
Li-Lian Yuan ◽  
Daniel Johnston ◽  
Richard Gray

We investigated internal Ca2+ release at mossy fiber synapses on CA3 pyramidal neurons (mossy fiber terminals, MFTs) in the hippocampus. Presynaptic Ca2+ influx was induced by giving a brief train of 20 stimuli at 100 Hz to the mossy fiber pathway. Using Ca2+ imaging techniques, we recorded the Ca2+ response as Δ F/ F,which increased rapidly with stimulation, but was often accompanied by a delayed peak that occurred after the train. The rise in presynaptic [Ca2+] could be completely blocked by application of 400 μM Cd2+. Furthermore, the evoked Ca2+ signals were reduced by group II mGluR agonists. Under the same experimental conditions, we investigated the effects of several agents on MFTs that disrupt regulation of intracellular Ca2+ stores resulting in depletion of internal Ca2+. We found that ryanodine, cyclopiazonic acid, thapsigargin, and ruthenium red all decreased both the early and the delayed increase in the Ca2+signals. We applied d,l-2-amino-5-phosphonovaleric acid (d,l-APV; 50 μM) and 6,7-Dinitroquinoxaline-2,3-dione (DNQX; 20 μM) to exclude the action of N-methyl-d-aspartate (NMDA) and non-NMDA receptors. Experiments with alternative lower affinity indicators for Ca2+ (fura-2FF and calcium green-2) and the transient K+ channel blocker, 4-aminopyridine were performed to control for the possible saturation of fura-2. Taken together, these results strongly support the hypothesis that the recorded terminals were from the mossy fibers of the dentate gyrus and suggest that a portion of the presynaptic Ca2+signal in response to brief trains of stimuli is due to release of Ca2+ from internal stores.


2004 ◽  
Vol 24 (8) ◽  
pp. 934-943 ◽  
Author(s):  
Bingren Hu ◽  
Chunli Liu ◽  
Helen Bramlett ◽  
Thomas J. Sick ◽  
Ofelia F. Alonso ◽  
...  

Traumatic brain injury (TBI) leads to mossy fiber reorganization, which is considered to be a causative factor in the development of temporal lobe epilepsy. However, the underlying mechanism is not fully understood. Emerging evidence suggests that TrkB–ERK1/2–CREB/Elk-1 pathways are highly related to synaptic plasticity. This study used the rat fluid-percussion injury model to investigate activation of TrkB–ERK1/2–CREB/Elk-1 signaling pathways after TBI. Rats were subjected to 2.0-atm parasagittal TBI followed by 30 minutes, 4 hours, 24 hours, and 72 hours of recovery. After TBI, striking activation of TrkB–ERK1/2–CREB/Elk-1 signaling pathways in mossy fiber organization were observed with confocal microscopy and Western blot analysis. ERK1/2 was highly phosphorylated predominantly in hippocampal mossy fibers, whereas TrkB was phosphorylated both in the mossy fibers and the dentate gyrus region at 30 minutes and 4 hours of recovery after TBI. CREB was also activated at 30 minutes, peaked at 24 hours of recovery, and returned to the control level at 72 hours of recovery in dentate gyrus granule cells. Elk-1 phosphorylation was seen in CA3 neurons at 4 hours after TBI. The results suggest that the signaling pathways of TrkB–ERK1/2–CREB/Elk-1 are highly activated in mossy fiber organization, which may contribute to mossy fiber reorganization seen after TBI.


Sign in / Sign up

Export Citation Format

Share Document