scholarly journals Weak signal amplification and detection by higher-order sensory neurons

2016 ◽  
Vol 115 (4) ◽  
pp. 2158-2175 ◽  
Author(s):  
Sarah N. Jung ◽  
Andre Longtin ◽  
Leonard Maler

Sensory systems must extract behaviorally relevant information and therefore often exhibit a very high sensitivity. How the nervous system reaches such high sensitivity levels is an outstanding question in neuroscience. Weakly electric fish ( Apteronotus leptorhynchus/ albifrons) are an excellent model system to address this question because detailed background knowledge is available regarding their behavioral performance and its underlying neuronal substrate. Apteronotus use their electrosense to detect prey objects. Therefore, they must be able to detect electrical signals as low as 1 μV while using a sensory integration time of <200 ms. How these very weak signals are extracted and amplified by the nervous system is not yet understood. We studied the responses of cells in the early sensory processing areas, namely, the electroreceptor afferents (EAs) and pyramidal cells (PCs) of the electrosensory lobe (ELL), the first-order electrosensory processing area. In agreement with previous work we found that EAs cannot encode very weak signals with a spike count code. However, PCs can encode prey mimic signals by their firing rate, revealing a huge signal amplification between EAs and PCs and also suggesting differences in their stimulus encoding properties. Using a simple leaky integrate-and-fire (LIF) model we predict that the target neurons of PCs in the midbrain torus semicircularis (TS) are able to detect very weak signals. In particular, TS neurons could do so by assuming biologically plausible convergence rates as well as very simple decoding strategies such as temporal integration, threshold crossing, and combining the inputs of PCs.

1999 ◽  
Vol 202 (10) ◽  
pp. 1319-1326
Author(s):  
R.J. Dunn ◽  
D. Bottai ◽  
L. Maler

The complete sequences and expression patterns of the NR1 (aptNR1) subunit of the N-methyl-d-aspartate (NMDA) receptor and its alternative splice isoforms have been determined for the weakly electric fish Apteronotus leptorhynchus. The deduced amino acid sequence of aptNR1 is approximately 88 % identical to the NR1 sequences of other vertebrate. Two of the three alternative splice cassettes previously described for mammalian NR1s, N1 and C1, are present in aptNR1, but the third cassette, C2, is not found. In addition, two teleost-specific splice cassettes occur on the N-terminal side of the C1 sequence. The cellular patterns of aptNR1 expression, including the patterns of N1 and C1 splicing, have been mapped using the in situ hybridization technique. High levels of aptNR1 mRNA were detected throughout the central nervous system including most neurons of the electrosensory system, with the highest levels in electrosensory lateral line lobe pyramidal cells. Expression of the N1 splice isoform was higher in more caudal regions of the brain, and expression of the C1 splice isoform was higher in more rostral regions. The N1 splice isoform was present in almost all NR1-positive cells, in contrast to the C1 splice isoform which was restricted to a subset of NR1-positive cells. These results demonstrate that the NR1 subunit of the NMDA receptor is evolutionarily conserved across species and that regulation of alternative RNA splicing modulates the properties of NR1 in different neurons of the central nervous system of A. leptorhynchus.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 161
Author(s):  
Irene Deidda ◽  
Roberta Russo ◽  
Rosa Bonaventura ◽  
Caterina Costa ◽  
Francesca Zito ◽  
...  

Invertebrates represent about 95% of existing species, and most of them belong to aquatic ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a short life cycle, easy laboratory manipulation, and high sensitivity to marine pollution and, therefore, they are considered to be optimal bioindicators for assessing detrimental chemical agents that are related to the marine environment and with potential toxicity to human health, including neurotoxicity. In general, albeit simple, the nervous system of marine invertebrates is composed of neuronal and glial cells, and it exhibits biochemical and functional similarities with the vertebrate nervous system, including humans. In recent decades, new genetic and transcriptomic technologies have made the identification of many neural genes and transcription factors homologous to those in humans possible. Neuroinflammation, oxidative stress, and altered levels of neurotransmitters are some of the aspects of neurotoxic effects that can also occur in marine invertebrate organisms. The purpose of this review is to provide an overview of major marine pollutants, such as heavy metals, pesticides, and micro and nano-plastics, with a focus on their neurotoxic effects in marine invertebrate organisms. This review could be a stimulus to bio-research towards the use of invertebrate model systems other than traditional, ethically questionable, time-consuming, and highly expensive mammalian models.


1993 ◽  
Vol 02 (01) ◽  
pp. 85-115 ◽  
Author(s):  
O.V. KULAGIN ◽  
G.A. PASMANIK ◽  
A.A. SHILOV

The results of the study on phase conjugation of weak optical signals with the energy of units of photons are considered. Basic concepts of a semi-classical theoretical approach to describe amplification and phase conjugation (PC) of such signals are presented. A review is given on the experimental investigations that allowed for reaching a limit (about 1 photon for a mode) sensitivity of optical systems with PC-mirrors for a large (~ 105) number of resolution elements. High-sensitivity PC-mirror optical systems are demonstrated for a variety of applications.


1947 ◽  
Vol s3-88 (1) ◽  
pp. 55-63
Author(s):  
R. A. R. GRESSON ◽  
I. ZLOTNIK

1. The Golgi material of the pyramidal cells of the cerebral cortex, the Purkinje cells of the cerebellum, and the multipolar cells of the medulla oblongata and ventral horns of the spinal cord of the sheep is present as filaments and as irregularly shaped bodies. In some of the cells, particularly in the lamb (Sheep V), the Golgi material has the appearance of a network. As it is frequently present as separate bodies it is suggested that it may always consist of discrete Golgi elements which are sometimes situated in close proximity or in contact with one another. Filamentous Golgi elements are present in the basal part of the cell processes. 2. An examination of neurones from the corresponding regions of the central nervous system of sheep infected experimentally with louping-ill showed that the Golgi material undergoes changes consequent upon the invasion of the cells by the virus. The Golgi material undergoes hypertrophy, and at the same time there is a reduction in the number of filamentous Golgi elements and a reduction in the amount of Golgi substance present in the cell processes. These changes are followed by fragmentation. All the neurones of a particular region are not affected equally at the same time. The Golgi material of the Purkinje cells tends to form groups in the cytoplasm prior to fragmentation. In the multipolar cells of the medulla oblongata the hypertrophy of the Golgi material is not as great as in the other regions of the central nervous system. The Golgi material of the motor nerve-cells of the ventral horns of the spinal cord undergoes considerable hypertrophy which is followed by a grouping of the Golgi elements and fragmentation.


2005 ◽  
Vol 94 (2) ◽  
pp. 1541-1553 ◽  
Author(s):  
Jenny C. A. Read ◽  
Bruce G. Cumming

The temporal properties of disparity-sensitive neurons place important temporal constraints on stereo matching. We examined these constraints by measuring the responses of disparity-selective neurons in striate cortex of awake behaving monkeys to random-dot stereograms that contained interocular delays. Disparity selectivity was gradually abolished by increasing interocular delay (when the delay exceeds the integration time, the inputs from the 2 eyes become uncorrelated). The amplitude of the disparity-selective response was a Gaussian function of interocular delay, with a mean of 16 ms (±5 ms, SD). Psychophysical measures of stereoacuity, in both monkey and human observers, showed a closely similar dependency on time, suggesting that temporal integration in V1 neurons is what determines psychophysical matching constraints over time. There was a slight but consistent asymmetry in the neuronal responses, as if the optimum stimulus is one in which the right stimulus leads by about 4 ms. Because all recordings were made in the left hemisphere, this probably reflects nasotemporal differences in conduction times; psychophysical data are compatible with this interpretation. In only a few neurons (5/72), interocular delay caused a change in the preferred disparity. Such tilted disparity/delay profiles have been invoked previously to explain depth perception in the stroboscopic version of the Pulfrich effect (and other variants). However, the great majority of the neurons did not show tilted disparity/delay profiles. This suggests that either the activity of these neurons is ignored when viewing Pulfrich stimuli, or that current theories relating neuronal properties to perception in the Pulfrich effect need to be reevaluated.


Author(s):  
Christof Koch

Nerve cells are the targets of many thousands of excitatory and inhibitory synapses. An extreme case are the Purkinje cells in the primate cerebellum, which receive between one and two hundred thousand synapses onto dendritic spines from an equal number of parallel fibers (Braitenberg and Atwood, 1958; Llinas and Walton, 1998). In fact, this structure has a crystalline-like quality to it, with each parallel fiber making exactly one synapse onto a spine of a Purkinje cell. For neocortical pyramidal cells, the total number of afferent synapses is about an order of magnitude lower (Larkman, 1991). These numbers need to be compared against the connectivity in the central processing unit (CPU) of modern computers, where the gate of a typical transistor usually receives input from one, two, or three other transistors or connects to one, two, or three other transistor gates. The large number of synapses converging onto a single cell provide the nervous system with a rich substratum for implementing a very large class of linear and nonlinear neuronal operations. As we discussed in the introductory chapter, it is only these latter ones, such as multiplication or a threshold operation, which are responsible for “computing” in the nontrivial sense of information processing. It therefore becomes crucial to study the nature of the interaction among two or more synaptic inputs located in the dendritic tree. Here, we restrict ourselves to passive dendritic trees, that is, to dendrites that do not contain voltage-dependent membrane conductances. While such an assumption seemed reasonable 20 or even 10 years ago, we now know that the dendritic trees of many, if not most, cells contain significant nonlinearities, including the ability to generate fast or slow all-or-none electrical events, so-called dendritic spikes. Indeed, truly passive dendrites may be the exception rather than the rule in the nervous In Sec. 1.5, we studied this interaction for the membrane patch model. With the addition of the dendritic tree, the nervous system has many more degrees of freedom to make use of, and the strength of the interaction depends on the relative spatial positioning, as we will see now. That this can be put to good use by the nervous system is shown by the following experimental observation and simple model.


2020 ◽  
Vol 21 (8) ◽  
pp. 2927
Author(s):  
Monika Gudowska-Sawczuk ◽  
Barbara Mroczko

Neuroborreliosis (NB) and neurosyphilis (NS) are abnormal conditions caused by spirochetal bacteria which affect the nervous system. Diagnosis of neuroborreliosis and neurosyphilis is determined by clinical examination of visible symptoms, serum and cerebrospinal fluid (CSF) analysis, and serological detection of antibodies against Borrelia burgdorferi sensu lato and Treponema pallidum, respectively. Establishing a diagnosis may sometimes pose a number of diagnostic difficulties. A potential role of chemokine ligand 13 (CXCL13) as an accurate diagnostic biomarker of intrathecal inflammation has been suggested. In this review, we focused on changes in serum and cerebrospinal fluid concentration of chemokine ligand 13 in selected spirochetal neurological diseases neuroborreliosis and neurosyphilis reported in the available literature. We performed an extensive search of the literature relevant to our investigation via the MEDLINE/PubMed database. It has been proven that CXCL13 determination can provide rapid information regarding central nervous system inflammation in patients with selected spirochetosis. We described that neuroborreliosis and neurosyphilis are associated with an elevated CXCL13 concentration, mainly in the cerebrospinal fluid. Moreover, literature data suggest that CXCL13 determination is the most interesting additional marker for diagnosis and monitoring of neuroborreliosis and neurosyphilis thanks to its high sensitivity. Based on these published findings, we suggest that CXCL13 has high diagnostic utility and may be applied in laboratory diagnostics as a potential diagnostic marker in human spirochetal neurologic diseases.


The Analyst ◽  
2019 ◽  
Vol 144 (10) ◽  
pp. 3216-3220 ◽  
Author(s):  
Van Thang Nguyen ◽  
Binh Huy Le ◽  
Young Jun Seo

A DSN–RNAse–TdT–T7 exo probing system allows the detection of miRNA 21 with very high sensitivity (LOD = 2.57 fM) and selectivity—the result of (i) avoiding the false-positive signal from miRNA reacting with TdT polymerase and (ii) signal amplification occurring through a FRET-breaking mechanism involving T7 exo.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi98-vi98
Author(s):  
Se-Hyuk Kim ◽  
Tae Hoon Roh ◽  
Hyunee Yim ◽  
Jin Roh ◽  
Kyi Beom Lee ◽  
...  

Abstract Succinate dehydrogenase (SDH) is a mitochondrial enzyme that plays an important role in both the Krebs cycle and the electron transport chain. SDH inactivation is associated with tumorigenesis in certain types of tumor. SDH consists of subunits A, B, C and D (SDHA, SDHB, SDHC, and SDHD, respectively). Immunohistochemistry for SDHB is a reliable method for detecting the inactivation of SDH by mutations in SDHA, SDHB, SDHC, SDHD and SDH complex assembly factor 2 (SDHAF2) genes with high sensitivity and specificity. SDHB immunohistochemistry has been used to examine the inactivation of SDH in various types of tumors. However, data on central nervous system (CNS) tumors are very limited. In the present study, we investigated the loss of SDHB immunoexpression in 90 cases of CNS tumors. Among the 90 cases of CNS tumors, only three cases of hemangioblastoma showed loss of SDHB immunoexpression. We further investigated SDHB immunoexpression in 35 cases of hemangioblastoma and found that 28 (80%) showed either negative or weak-diffuse pattern of SDHB immunoexpression, which suggests the inactivation of SDH. Our results suggest that SDH inactivation may represent an alternative pathway in the tumorigenesis of hemangioblastoma.


Sign in / Sign up

Export Citation Format

Share Document