scholarly journals Molecular biology of the apteronotus NMDA receptor NR1 subunit

1999 ◽  
Vol 202 (10) ◽  
pp. 1319-1326
Author(s):  
R.J. Dunn ◽  
D. Bottai ◽  
L. Maler

The complete sequences and expression patterns of the NR1 (aptNR1) subunit of the N-methyl-d-aspartate (NMDA) receptor and its alternative splice isoforms have been determined for the weakly electric fish Apteronotus leptorhynchus. The deduced amino acid sequence of aptNR1 is approximately 88 % identical to the NR1 sequences of other vertebrate. Two of the three alternative splice cassettes previously described for mammalian NR1s, N1 and C1, are present in aptNR1, but the third cassette, C2, is not found. In addition, two teleost-specific splice cassettes occur on the N-terminal side of the C1 sequence. The cellular patterns of aptNR1 expression, including the patterns of N1 and C1 splicing, have been mapped using the in situ hybridization technique. High levels of aptNR1 mRNA were detected throughout the central nervous system including most neurons of the electrosensory system, with the highest levels in electrosensory lateral line lobe pyramidal cells. Expression of the N1 splice isoform was higher in more caudal regions of the brain, and expression of the C1 splice isoform was higher in more rostral regions. The N1 splice isoform was present in almost all NR1-positive cells, in contrast to the C1 splice isoform which was restricted to a subset of NR1-positive cells. These results demonstrate that the NR1 subunit of the NMDA receptor is evolutionarily conserved across species and that regulation of alternative RNA splicing modulates the properties of NR1 in different neurons of the central nervous system of A. leptorhynchus.

1947 ◽  
Vol s3-88 (1) ◽  
pp. 55-63
Author(s):  
R. A. R. GRESSON ◽  
I. ZLOTNIK

1. The Golgi material of the pyramidal cells of the cerebral cortex, the Purkinje cells of the cerebellum, and the multipolar cells of the medulla oblongata and ventral horns of the spinal cord of the sheep is present as filaments and as irregularly shaped bodies. In some of the cells, particularly in the lamb (Sheep V), the Golgi material has the appearance of a network. As it is frequently present as separate bodies it is suggested that it may always consist of discrete Golgi elements which are sometimes situated in close proximity or in contact with one another. Filamentous Golgi elements are present in the basal part of the cell processes. 2. An examination of neurones from the corresponding regions of the central nervous system of sheep infected experimentally with louping-ill showed that the Golgi material undergoes changes consequent upon the invasion of the cells by the virus. The Golgi material undergoes hypertrophy, and at the same time there is a reduction in the number of filamentous Golgi elements and a reduction in the amount of Golgi substance present in the cell processes. These changes are followed by fragmentation. All the neurones of a particular region are not affected equally at the same time. The Golgi material of the Purkinje cells tends to form groups in the cytoplasm prior to fragmentation. In the multipolar cells of the medulla oblongata the hypertrophy of the Golgi material is not as great as in the other regions of the central nervous system. The Golgi material of the motor nerve-cells of the ventral horns of the spinal cord undergoes considerable hypertrophy which is followed by a grouping of the Golgi elements and fragmentation.


Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 441-450 ◽  
Author(s):  
K. Blochlinger ◽  
L.Y. Jan ◽  
Y.N. Jan

The cut locus is both necessary and sufficient to specify the identity of a class of sensory organs in Drosophila embryos. It is also expressed in and required for the development of a number of other embryonic tissues, such as the central nervous system, the Malpighian tubules and the tracheal system. We here describe the expression of cut in the precursors of adult sensory organs. We also show that cut is expressed in cells of the prospective wing margin and correlate the wing margin phenotype caused by two cut mutations with altered cut expression patterns. Finally, we observe cut-expressing cells in other adult tissues, including Malpighian tubules, muscles, the central nervous system and ovarian follicle cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-3 ◽  
Author(s):  
Thomas L. Schwartz ◽  
Umar A. Siddiqui ◽  
Shafi Raza

Objective. Glutamate, an excitatory neurotransmitter in the central nervous system (CNS), may play a role in the development of anxiety. Memantine partially blocks N-methyl-D-aspartate (NMDA) receptors' glutamate channels located in the CNS. This paper evaluates memantine as an augmentation therapy for treatment of anxiety.Methods. 15 consecutive partially responding anxious patients were treated with adjunctive memantine for 10 weeks. Memantine was dosed 5–20 mg/day.Result. Memantine augmentation resulted in clinically relevant reduction in anxiety symptoms when compared to baseline. Forty percent of patients achieved remission (HAM-A ≥ 7). Memantine improved sleep quality. Mean dose was 14 mg/d (range 5–20 mg/d). Typical adverse events included nausea and headache.Conclusion. The NMDA receptor antagonist memantine may be an effective augmentation therapy in patients with treatment-resistant anxiety.


2019 ◽  
Author(s):  
Brittany A. Mersman ◽  
Sonia N. Jolly ◽  
Zhenguo Lin ◽  
Fenglian Xu

AbstractConnections between neurons called synapses are the key components underlying all nervous system functions of animals and humans. However, important genetic information on the formation and plasticity of one type, the electrical (gap junction-mediated) synapse, is severely understudied, especially in invertebrates. In the present study, we set forth to identify and characterize the gap junction-encoding gene innexin in the central nervous system (CNS) of the mollusc pond snail Lymnaea stagnalis (L. stagnalis). With PCR, 3’ and 5’ RACE, and BLAST searches, we identified eight innexin genes in the L. stagnalis nervous system named Lst Inx1-8. Phylogenetic analysis revealed that the L. stagnalis innexin genes originated from a single copy in the common ancestor of molluscan species by multiple gene duplication events and have been maintained in L. stagnalis since they were generated. The paralogous innexin genes demonstrate distinct expression patterns among tissues. In addition, one paralog, Lst Inx1, exhibits heterogeneity in cells and ganglia, suggesting the occurrence of functional diversification after gene duplication. These results introduce possibilities to study an intriguing potential relationship between innexin paralog expression and cell-specific functional outputs such as heterogenic ability to form channels and exhibit synapse plasticity. The L. stagnalis CNS contains large neurons and a functionally defined network for behaviors; with the introduction of L. stagnalis in the gap junction field, we are providing novel opportunities to combine genetic research with direct investigation of functional outcomes at the cellular, synaptic, and behavioral levels.Summary StatementBy characterizing the gap junction gene innexin in Lymnaea stagnalis, we open opportunities for novel studies on the regulation, plasticity, and evolutionary function of electrical synapses throughout the animal kingdom.


2020 ◽  
Author(s):  
Ting-Ting Luo ◽  
Chun-Qiu Dai ◽  
Jia-Qi Wang ◽  
Zheng-Mei Wang ◽  
Yi Yang ◽  
...  

Abstract Objectives: Drp1 is widely expressed in the mouse central nervous system and plays a role in inducing the mitochondrial fission process. Many diseases are associated with Drp1 and mitochondria. However, since the exact distribution of Drp1 has not been specifically observed, it is difficult to determine the impact of anti-Drp1 molecules on the human body. Clarifying the specific Drp1 distribution could be a good approach to targeted treatment or prognosis. Methods: We visualized the distribution of Drp1 in different brain regions and explicated the relationship between Drp1 and mitochondria. GAD67-GFP knock-in mice were utilized to detect the expression patterns of Drp1 in GABAergic neurons. We also further analyzed Drp1 expression in human malignant glioma tissue. Results : Drp1 was widely but heterogeneously distributed in the central nervous system. Further observation indicated that Drp1 was highly and heterogeneously expressed in inhibitory neurons. Under transmission electron microscopy, the distribution of Drp1 was higher in dendrites than other areas in neurons, and only a small amount of Drp1 was localized in mitochondria. In human malignant glioma, the fluorescence intensity of Drp1 increased from grade I-III, while grade IV showed a declining trend. Conclusion: In this study, we observed a wide heterogeneous distribution of Drp1 in the central nervous system, which might be related to the occurrence and development of neurologic disease. We hope that the relationship between Drp1 and mitochondria may will to therapeutic guidance in the clinic.


2018 ◽  
Author(s):  
K.M. Allen ◽  
G. Marsat

ABSTRACTAs communication signal properties change, through genetic drift or selective pressure, the sensory systems that receive these signals must also adapt to maintain sensitivity and adaptability in an array of contexts. Shedding light on this process helps us understand how sensory codes are tailored to specific tasks. In a species of weakly electric fish, Apteronotus albifrons, we examined the unique neurophysiological properties that support the encoding of electrosensory communication signals that the animal encounters in social exchanges. We compare our findings to known coding properties of the closely related species, Apteronotus leptorhynchus, to establish how these animals differ in their ability to encode their distinctive communication signals. While there are many similarities between these two species, we found notable differences leading to relatively poor coding of the details of chirp structure occurring on high-frequency background beats. As a result, small differences in chirp properties are poorly resolved by the nervous system. We performed behavioral tests to relate A. albifrons chirp coding strategies to its use of chirps during social encounters. Our results suggest that A. albifrons do not exchange frequent chirps in non-breeding condition, particularly when the beat frequency is high. These findings parallel the mediocre chirp coding accuracy in that they both point to a reduced reliance on frequent and rich exchange of information through chirps during these social interactions. Therefore, our study suggests that neural coding strategies in the central nervous system vary across species in a way that parallels the behavioral use of the sensory signals.SIGNIFICANCESender-receiver matching is a phenomenon commonly observed in the peripheral nervous system. It enables communication production and reception to evolve together so that conspecifics remain sensitive to important signals. In this manuscript we examine this phenomenon in the central nervous system of the weakly electric fish A. albifrons and compare its processing of communication signals to a closely related species (A. leptorhynchus). Although some differences across the two species can help tailor the system for processing species-specific signals, our data indicate that encoding of communication signals in A. albifrons is not as sensitive as in A. leptorhynchus for certain categories of signals. Our data support the idea that the extent of sender-receiver matching can vary as a function of behavioral needs.


2020 ◽  
Vol 2020 ◽  
pp. 1-5 ◽  
Author(s):  
Jose Gabriel Solis ◽  
Arturo Olascoaga Lugo ◽  
Marco Antonio Rodríguez Florido ◽  
Bayron Alexander Sandoval Bonilla ◽  
Jose Malagón Rangel

Sarcoidosis is a multisystemic inflammatory disease of unknown cause. It is characterized by the presence of noncaseating granuloma on a biopsy specimen. Clinical presentation varies across case report series with myriad of symptoms ranging from fever, respiratory symptoms, and skin lesions, or atypical symptoms like heart block or neurological symptoms. Hence, we report the case of a 22-year-old woman with encephalitis, a pituitary mass, and adipsic diabetes insipidus. The diagnostic approach did not end on the biopsy of the lesion, which reported noncaseating granulomas; on the contrary, it was the beginning of a path to exclude other causes of the central nervous system granulomas that ended with the diagnosis of the isolated central nervous system sarcoidosis. Also, we report the first proven association between anti-NMDA receptor antibodies and sarcoidosis.


1950 ◽  
Vol 64 (2) ◽  
pp. 172-181
Author(s):  
K. S. Chodnik

SynopisThe Golgi material of the neurones of the central nervous system of normal fowl and of birds affected with spontaneous cases of Neurolymphomatosis gallinarum (fowl paralysis) is described. Material was prepared according to the methods of Kolatchev and of Aoyama. The Golgi material of normal pyramidal cells of the cerebral cortex, the Purkinje cells of the cerebellum, the multipolar cells of the spinal cord, and the cells of the spinal ganglia, is present as rods, irregular bodies and filaments. Compact net-like Golgi material is present in the small cells of the spinal ganglia.In the neurones of fowl affected with Neurolymphomatosis gallinarum the Golgi material undergoes hypertrophy, followed by clustering of the Golgi elements and fragmentation. The intensity of the morphological changes and the number of neurones affected in a particular region of the central nervous system varies considerably, except in the spinal ganglia where all the cells examined exhibited marked changes. It was not possible to determine whether the changes were primary or secondary in nature. The literature of the subject is discussed.


Sign in / Sign up

Export Citation Format

Share Document