Auditory response properties of neurons in the putamen and globus pallidus of awake cats

2014 ◽  
Vol 111 (10) ◽  
pp. 2124-2137 ◽  
Author(s):  
Renjia Zhong ◽  
Ling Qin ◽  
Yu Sato

Several decades of research have provided evidence that the basal ganglia are closely involved in motor processes. Recent clinical, electrophysiological, behavioral data have revealed that the basal ganglia also receive afferent input from the auditory system, but the detailed auditory response characteristics have not yet reported. The present study aimed to reveal the acoustic response properties of neurons in parts of the basal ganglia. We recorded single-unit activities from the putamen (PU) and globus pallidus (GP) of awake cats passively listening to pure tones, click trains, and natural sounds. Our major findings were: 1) responses in both PU and GP neurons were elicited by pure-tone stimuli, whereas PU neurons had lower intensity thresholds, shorter response latencies, shorter excitatory duration, and larger response magnitudes than GP neurons. 2) Some GP neurons showed a suppressive response lasting throughout the stimulus period. 3) Both PU and GP did not follow periodically repeated click stimuli well, and most neurons only showed a phasic response at the stimulus onset and offset. 4) In response to natural sounds, PU also showed a stronger magnitude and shorter duration of excitatory response than GP. The selectivity for natural sounds was low in both nuclei. 5) Nonbiological environmental sounds more efficiently evoked responses in PU and GP than the vocalizations of conspecifics and other species. Our results provide insights into how acoustic signals are processed in the basal ganglia and revealed the distinction of PU and GP in sensory representation.

2004 ◽  
Vol 92 (4) ◽  
pp. 2083-2092 ◽  
Author(s):  
Ernest E. Kwegyir-Afful ◽  
Asaf Keller

In addition to a primary somatosensory cortex (SI), the cerebral cortex of all mammals contains a second somatosensory area (SII); however, the functions of SII are largely unknown. Our aim was to explore the functions of SII by comparing response properties of whisker-related neurons in this area with their counterparts in the SI. We obtained extracellular unit recordings from narcotized rats, in response to whisker deflections evoked by a piezoelectric device, and compared response properties of SI barrel (layer IV) neurons with those of SII (layers II to VI) neurons. Neurons in both cortical areas have similar response latencies and spontaneous activity levels. However, SI and SII neurons differ in several significant properties. The receptive fields of SII neurons are at least five times as large as those of barrel neurons, and they respond equally strongly to several principal whiskers. The response magnitude of SII neurons is significantly smaller than that of neurons in SI, and SII neurons are more selective for the angle of whisker deflection. Furthermore, whereas in SI fast-spiking (inhibitory) and regular-spiking (excitatory) units have different spontaneous and evoked activity levels and differ in their responses to stimulus onset and offset, SII neurons do not show significant differences in these properties. The response properties of SII neurons suggest that they are driven by thalamic inputs that are part of the paralemniscal system. Thus whisker-related inputs are processed in parallel by a lemniscal system involving SI and a paralemniscal system that processes complimentary aspects of somatosensation.


1991 ◽  
Vol 65 (2) ◽  
pp. 301-329 ◽  
Author(s):  
J. W. Mink ◽  
W. T. Thach

1. We have tested the hypothesis that the basal ganglia initiate some one or several modes of movement by recording the change in discharge frequency of pallidal neurons during visually triggered step and visually paced ramp moves in relation to the visual stimulus onset, the change in the electromyograph (EMG), and the movement onset of trained rhesus monkeys. 2. The modal times of change for globus pallidus pars interna (GPi) were significantly later than those for forearm agonist muscle EMG. By contrast, the modal time of change for the cerebellar dentate nucleus preceded that for wrist agonist EMG. 3. The direction of change in discharge frequency of the GPi cells was for 71% an increase and for 29% a decrease. 4. Because of the relatively late change of activity of GPi neurons, we propose that GPi neurons cannot initiate these movements, as others have also suggested. The commands for the initiation of these movements may instead be generated by structures that include the lateral cerebellum and the anterior cerebral cortex. 5. We have also tested the hypothesis that the pallidum of the basal ganglia or the dentate of the lateral cerebellum may control the direction and other parameters of the trajectory by recording from both structures to see whether cell discharge correlated with the parameter and whether the correlation was consistent across tasks. Two rhesus monkeys were trained to perform hold-ramp-hold and hold-step-hold visually guided movements in opposite directions by flexing and extending the wrist with and against uniform oppositely directed torque loads (0.2 Nm). Wrist position, velocity, force, and EMG were recorded simultaneously. Movement amplitudes and directional intent were computed and inferred, respectively. 6. Task related neurons were classified as follows: 1) directional, if the discharge rate was reciprocal for opposite movements or if it increased or decreased during movement in one direction only; 2) bidirectional, if the discharge rate increased or decreased during movement in both directions; and 3) "other," if it was directional under one load and bidirectional under the other. During step tracking, 34 GPi, 47 globus pallidus pars externa (GPe), and 44 cerebellar dentate nuclear neurons were related to the task. Of the GPi cells, 14 (41%) were directional, 6 (18%) bidirectional, and 14 (41%) other. Of the GPe neurons, 13 (28%) were directional, 19 (40%) bidirectional, and 15 (32%) other. Of the dentate cerebellar nuclear cells, 5 (11%) were bidirectional, 31 (70%) bidirectional, and 8 (18%) other.(ABSTRACT TRUNCATED AT 400 WORDS)


2008 ◽  
Vol 100 (2) ◽  
pp. 1053-1066 ◽  
Author(s):  
Moshe Rav-Acha ◽  
Hagai Bergman ◽  
Yosef Yarom

The basal ganglia (BG) play a critical role in the pathogenesis and pathophysiology of Parkinson's disease (PD). Recent studies indicate that serotoninergic systems modulate BG activity and may be implicated in the pathophysiology and treatment of PD. The globus pallidus (GP), the rodent homologue of the primate GPe, is the main central nucleus of the basal ganglia, affecting the striatum, the subthalamic nucleus (STN), and BG output structures. We therefore studied the effect of serotonin (5-HT) and specific 5-HT agonists and antagonists on GP neurons from rat brain slices. Using intra- and extracellular recordings of GP neurons we found that serotonin increases the firing rate of GP neurons. Analyzing the effects of specific 5-HT agonists and antagonists on the firing rate of GP neurons showed that the increase in firing rate is due to the activation of 5-HT1B and 5-HT1A receptors. Intracellular recordings in both voltage- and current-clamp modes revealed that serotonin mediates its effect via pre- and postsynaptic mechanisms. The presynaptic effect is mediated by attenuation of γ-aminobutyric acid release, probably through activation of 5-HT1B receptors. Postsynaptically, serotonin activates a hyperpolarization-activated cation channel, probably via 5-HT1A receptors. Furthermore, serotonin decreases the fast synaptic depression characteristic of the striatal afferent input. The decreased serotonin concentrations in the BG nuclei in PD may contribute to depressed GP activity and enhance the emergence of BG pathological synchronous oscillations. We therefore suggest that future therapeutics of PD should be directed toward restoration of normal serotonin levels in BG nuclei.


2021 ◽  
pp. 1-12
Author(s):  
Xi Bai ◽  
Peter Vajkoczy ◽  
Katharina Faust

<b><i>Objective:</i></b> The pathophysiology of dystonia is poorly understood. As opposed to secondary forms of dystonia, primary dystonia has long been believed to lack any neuroanatomical substrate. During trajectory planning for DBS, however, conspicuous T2-hyperinstensive signal alterations (SA) were registered within the target region, even in young patients, where ischemia is rare. <b><i>Methods:</i></b> Fifty MRIs of primary dystonia patients scheduled for DBS were analyzed. Total basal ganglia (BG) volumes, as well as proportionate SA volumes, were measured and compared to 50 age-matched control patients. <b><i>Results:</i></b> There was a 10-fold preponderance of percentaged SA within the globus pallidus (GP) in dystonia patients. The greatest disparity was in young patients &#x3c;25 years. Also, total BG volume differences were observed with larger GP and markedly smaller putamen and caudate in the dystonia group. <b><i>Conclusions:</i></b> BG morphology in primary dystonia differed from a control population. Volume reductions of the putamen and caudate may reflect functional degeneration, while volume increases of the GP may indicate overactivity. T2-hyperintensive SA in the GP of young primary dystonia patients, where microvascular lesions are highly unlikely, are striking. Their pathogenic role remains unclear.


Development ◽  
1998 ◽  
Vol 125 (24) ◽  
pp. 5079-5089 ◽  
Author(s):  
J.D. Kohtz ◽  
D.P. Baker ◽  
G. Corte ◽  
G. Fishell

The cortex and basal ganglia are the major structures of the adult brain derived from the embryonic telencephalon. Two morphologically distinct regions of the basal ganglia are evident within the mature ventral telencephalon, the globus pallidus medially, and the striatum, which is positioned between the globus pallidus and the cortex. Deletion of the Sonic Hedgehog gene in mice indicates that this secreted signaling molecule is vital for the generation of both these ventral telencephalic regions. Previous experiments showed that Sonic Hedgehog induces differentiation of ventral neurons characteristic of the medial ganglionic eminence, the embryonic structure which gives rise to the globus pallidus. In this paper, we show that later in development, Sonic Hedgehog induces ventral neurons with patterns of gene expression characteristic of the lateral ganglionic eminence. This is the embryonic structure from which the striatum is derived. These results suggest that temporally regulated changes in Sonic Hedgehog responsiveness are integral in the sequential induction of basal telencephalic structures.


2019 ◽  
Author(s):  
Xiaosong He ◽  
Ganne Chaitanya ◽  
Burcu Asma ◽  
Lorenzo Caciagli ◽  
Danielle S. Bassett ◽  
...  

AbstractFocal to bilateral tonic-clonic seizures are associated with lower quality of life, higher risk of seizure-related injuries, increased chance of sudden unexpected death, as well as unfavorable treatment outcomes. Achieving greater understanding of its underlying circuitry offers better opportunity to control these particularly serious seizures. Towards this goal, we provide a network science perspective of the interactive pathways among basal ganglia, thalamus and the cortex, to explore the imprinting of secondary seizure generalization on the mesoscale brain network in temporal lobe epilepsy. Specifically, we parameterized the functional organization of both the thalamocortical network and the basal ganglia—thalamus network with resting-state functional magnetic resonance imaging in three groups of patients with different focal to bilateral tonic-clonic seizure histories. Using the participation coefficient to describe the pattern of thalamocortical connections among different cortical networks, we showed that, compared to patients with no previous history, those with positive histories of focal to bilateral tonic-clonic seizures, including both remote (none for over one year) and current (within the past year) histories, presented more uniform distribution patterns of thalamocortical connections in the ipsilateral medial-dorsal thalamic nuclei. As a sign of greater thalamus mediated cortico-cortical communication, this result comports with greater susceptibility to secondary seizure generalization from the epileptogenic temporal lobe to broader brain networks in these patients. Using interregional integration to characterize the functional interaction between basal ganglia and thalamus, we demonstrated that patients with current history presented increased interaction between putamen and globus pallidus internus, and decreased interaction between the latter and the thalamus, compared to the other two patient groups. Importantly, through a series of “disconnection” simulations, we showed that these changes in interactive profiles of the basal ganglia—thalamus network in the current history group mainly depended upon the direct but not the indirect basal ganglia pathway. It is intuitively plausible that such disruption in the striatum modulated tonic inhibition of the thalamus from the globus pallidus internus could lead to an under-suppressed thalamus, which in turn may account for their greater vulnerability to secondary seizure generalization. Collectively, these findings suggest that the broken balance between the basal ganglia inhibition and thalamus synchronization can inform the presence and effective control of focal to bilateral tonic-clonic seizures. The mechanistic underpinnings we uncover may shed light on the development of new treatment strategies for patients with temporal lobe epilepsy.


2009 ◽  
Vol 102 (2) ◽  
pp. 1092-1102 ◽  
Author(s):  
Ana V. Cruz ◽  
Nicolas Mallet ◽  
Peter J. Magill ◽  
Peter Brown ◽  
Bruno B. Averbeck

Dopamine depletion in cortical-basal ganglia circuits in Parkinson's disease (PD) grossly disturbs movement and cognition. Classic models relate Parkinsonian dysfunction to changes in firing rates of basal ganglia neurons. However, disturbances in other dynamics of neural activity are also common. Taking both inappropriate firing rates and other dynamics into account and determining how changes in the properties of these neural circuits that occur during PD impact on information coding are thus imperative. Here, we examined in vivo network dynamics in the external globus pallidus (GPe) of rats before and after chronic dopamine depletion. Dopamine depletion led to decreases in the firing rates of GPe neurons and increases in synchronized network oscillations in the β frequency (13–30 Hz) band. Using logistic regression models, we determined the combined and separate impacts of these factors on network entropy, a measure of the upper bound of information coding capacity. Importantly, changes in these features in dopamine-depleted rats led to a significant decrease in GPe network entropy. Changes in firing rates had the largest impact on entropy, with changes in synchrony also decreasing entropy at the network level. Changes in autocorrelations tended to offset these effects because autocorrelations decreased entropy more in the control animals. Thus it is possible that reduced information coding capacity within basal ganglia networks may contribute to the behavioral deficits accompanying PD.


Author(s):  
Charles J. Wilson

The subthalamo-pallidal system constitutes the second layer of circuitry in the basal ganglia, downstream of the striatum. It consists of four nuclei. Two of them, the external segment of the globus pallidus (GPe) and subthalamic nucleus (STN), make their connections primarily within the basal ganglia. The others, the internal segment of the globus pallidus (GPi) and the substantia nigra pars reticulata (SNr), are the output nuclei of the basal ganglia. Collectively, their axons distribute collaterals to all the targets of the basal ganglia. Rare interneurons have been reported in each of them from studies of Golgi-stained preparations, but they have not so far been confirmed using more modern methods. The circuit as described here is based primarily on studies of the axonal arborizations of neurons stained individually by intracellular or juxtacellular labeling.


Sign in / Sign up

Export Citation Format

Share Document