scholarly journals Control Strategies for the Transition From Multijoint to Single-Joint Arm Movements Studied Using a Simple Mechanical Constraint

2000 ◽  
Vol 83 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Robert A. Scheidt ◽  
W. Zev Rymer

Changes were studied in neuromotor control that were evoked by constraining the motion of the elbow joint during planar, supported movements of the dominant arm in eight normal human subjects. Electromyograph (EMG) recordings from shoulder and arm muscles were used to determine whether the normal multijoint muscle activity patterns associated with reaching to a visual target were modified when the movement was reduced to a single-joint task, by pinning the elbow to a particular location in the planar work space. Three blocks of 150 movements each were used in the experiments. Subjects were presented with the unconstrained task in the first and third blocks with an intervening block of constrained trials. Kinematic, dynamic, and EMG measures of performance were compared across blocks. The imposition of the pin constraint caused predictable changes in kinematic performance, in that near-linear motions of the hand became curved. This was followed by changes in limb dynamic performance at the elbow. However, changes in EMG activity at the shoulder lagged the kinematic changes substantially (by about 15 trials). The gradual character of the changes in EMG timing does not support a primary role for segmental reflex action in mediating the transition between multijoint and single-joint control strategies. Furthermore, the scope and magnitude of these changes argues against the notion that human motor performance is driven by the optimization of muscle- or joint-related criteria alone. The findings are best described as reflecting the actions of a feedforward adaptive controller that has properties that are modified progressively according to the environmental state.

1989 ◽  
Vol 32 (4) ◽  
pp. 749-754 ◽  
Author(s):  
Adrienne L. Perlman ◽  
Erich S. Luschei ◽  
Charles E. Du Mond

The purpose of this investigation was to determine, in a quantitative manner, which, if any, nonswallowing tasks produce significant levels of activation in the superior pharyngeal constrictor muscle of normal human subjects. Bipolar hooked wire electrodes were inserted in the superior pharyngeal constrictor muscle of 15 healthy subjects. Electrode placement was controlled. Each subject performed two reflexive tasks, six voluntary tasks requiring phonation, and four nonspeech voluntary tasks. The electromyogram (EMG) was rectified and integrated. The resulting number was then transformed by taking its natural logarithm. An ANOVA was performed and a linear model was estimated. The magnitude of the EMG activity was related to the location of the electrodes. The largest values were recorded in the lateral-superior placement, followed by the lateral-inferior, medial-inferior and medial-superior. The superior pharyngeal contrictor was found to be a muscle activated primarily during reflexive activity. There was a general trend in the amplitude of EMG activity in relationship to task. Swallowing produced the greatest amount of activity and a gag produced about 60% of the activity produced by the swallow. Two tasks, production of the work /hk/ in which the phoneme /k/ was stressed, and a "modified Valsalva," which was actually a hard /k/ held for several seconds, produced the next greatest level of EMG.


1978 ◽  
Vol 56 (5) ◽  
pp. 771-776 ◽  
Author(s):  
M. D. O'Riain ◽  
R. D. G. Blair ◽  
J. T. Murphy

The electromyographic (EMG) activity following a sudden stretch applied to wrist flexor or extensor muscles was investigated using a method which enabled the individual records and cumulative results of 30 trials to be observed simultaneously. The results showed that in each case the spinal reflex EMG burst was followed by one or two additional reflex bursts. The second of these latter bursts, when present, occurred in one of two distinct latency ranges. Thus, three distinct latency ranges were observed for reflex bursts following the spinal reflex burst. A possible explanation for these results is that there are three distinct long-loop reflexes, one or two of which may be active following a muscle stretch. The present results do not distinguish whether any or all of these long-loop reflexes are segmental or supraspinal in origin.


Author(s):  
W. Bedingham ◽  
W.G. Tatton

ABSTRACT:The relationship between the segmented EMG activity in flexor carpi radialis evoked by imposed angular wrist displacement was studied with respect to the level of pre-existing background activity in 30 normal human subjects. Input-output response planes demonstrate that the magnitude of the Ml & M2-3 segments is dependent on both the displacement parameters and the level of pre-existing EMG activity in the stretched muscle. If the level of background activity exceeded 4-5% of the maximum voluntary contraction, the onset latency of the M1 segment and duration of the Ml and the M2-3 segments remained constant (within ± 2 msec) for different magnitudes of step load displacements, despite marked variation in the range of the displacement’s amplitude, duration, velocity, and acceleration. We propose that the dependency of the relationship between reflex magnitude and imposed movement parameters on tonic motoneuron activity, as represented by pre-existing EMG levels, may reflect an automatic adjustment mechanism that could be utilized in servo compensation of movements requiring markedly different force levels.


2012 ◽  
Vol 531-532 ◽  
pp. 773-777
Author(s):  
Zhong Chu Wang ◽  
Xin Zhao ◽  
Ran Bi

Cast-roll hydraulic AGC is the main control means of the strip t hickness. The control effect of traditional PID is poor for adjusting this kind of model parameters. Therefore, a new type of fuzzy neural network self-learning and adaptive controller is proposed, and analyze the composition and basic performance. The simulation results show that the new controller can effectively improve its response, what’s more it has a better dynamic performance more than another control strategies.


1982 ◽  
Vol 48 (2) ◽  
pp. 403-418 ◽  
Author(s):  
R. J. Jaeger ◽  
G. L. Gottlieb ◽  
G. C. Agarwal ◽  
A. J. Tahmoush

1. Step torque perturbations were applied to flex or extend the wrists of normal human subjects who were instructed to restore the joint to its initial position as quickly as possible. The resulting electromyographic (EMG) activity was recorded from the flexor carpi radialis, flexor carpi ulnaris, and extensor carpi radialis. Experiments were performed under control and three altered conditions of the limb: 1) ischemia, 2) vibration, and 3) local ulnar nerve anesthesia. The effects of the procedures on the EMG responses in four poststimulus intervals--the myotatic (30-60 ms), late myotatic (60-120 ms), postmyotatic (120-200 ms), and stabilizing (200-400 ms)--were studied. 2. Ischemia was induced in the forearm by means of a sphygmomanometer cuff inflated to 150 mm of mercury around the upper arm. After about 20 min of ischemia the stretch-evoked EMG activity over the 30-60-ms and 60-120-ms intervals were abolished, while the longer latency responses persisted. 3. Vibration at frequencies between 50 and 120 Hz was applied to the tendon of the stretched muscle. Vibration consistently reduced the EMG activity only in the 30-60-ms interval. 4. The ulnar nerve was blocked near the elbow joint by local anesthetic. Varying degrees of block were obtained, from a mild sensory impairment to a complete block. At intermediate degrees of block, EMG activity in the 30-60-ms and 60-120-ms intervals were attenuated with little alteration in later responses. 5. The data are used to differentiate functionally the myoelectric responses evoked in four poststimulus time segments in the stretched muscle by step torque perturbations.


2003 ◽  
Vol 90 (4) ◽  
pp. 2560-2570 ◽  
Author(s):  
Karen T. Reilly ◽  
Marc H. Schieber

The human flexor digitorum profundus (FDP) sends tendons to all 4 fingers. One might assume that this multitendoned muscle consists of 4 discrete neuromuscular compartments each acting on a different finger, but recent anatomical and physiological studies raise the possibility that the human FDP is incompletely subdivided. To investigate the functional organization of the human FDP, we recorded electromyographic (EMG) activity by bipolar fine-wire electrodes simultaneously from 2 or 4 separate intramuscular sites as normal human subjects performed isometric, individuated flexion, and extension of each left-hand digit. Some recordings showed EMG activity during flexion of only one of the 4 fingers, indicating that the human FDP has highly selective core regions that act on single fingers. The majority of recordings, however, showed a large amount of EMG activity during flexion of one finger and lower levels of EMG activity during flexion of an adjacent finger. This lesser EMG activity during flexion of adjacent fingers was unlikely to have resulted from recording motor units in neighboring neuromuscular compartments, and instead suggests incomplete functional subdivision of the human FDP. In addition to the greatest agonist EMG activity during flexion of a given finger, most recordings also showed EMG activity during extension of adjacent fingers, apparently serving to stabilize the given finger against unwanted extension. Paradoxically, the functional organization of the human FDP—with both incomplete functional subdivision and highly selective core regions—may contribute simultaneously to the inability of humans to produce completely independent finger movements, and to the greater ability of humans (compared with macaques) to individuate finger movements.


1963 ◽  
Vol 10 (02) ◽  
pp. 400-405 ◽  
Author(s):  
B. A Amundson ◽  
L. O Pilgeram

SummaryEnovid (5 mg norethynodrel and 0.075 mg ethynylestradiol-3-methyl ether) therapy in young normal human subjects causes an increase in plasma fibrinogen of 32.4% (P >C 0.001). Consideration of this effect together with other effects of Enovid on the activity of specific blood coagulatory factors suggests that the steroids are exerting their effect at a specific site of the blood coagulation and/or fibrinolytic system. The broad spectrum of changes which are induced by the steroids may be attributed to a combination of a chain reaction and feed-back control.


1979 ◽  
Vol 42 (02) ◽  
pp. 694-704 ◽  
Author(s):  
F Rendu ◽  
A T Nurden ◽  
M Lebret ◽  
J P Caen

SummaryWe have used the mepacrine-labelling procedure to measure the dense body (serotonin storage organelle) content of the platelets of 2 hereditary disorders where abnormalities in dense body number were suspected. The platelets were incubated with mepacrine and examined by fluorescence microscopy. A mean number of 5.4 ± 0.8 (SD) dense bodies per platelet was calculated from the data obtained using platelets isolated from 40 normal human subjects. In contrast the platelets of 2 patients with the Bernard-Soulier syndrome contained an average of 14 and 17 labelled granules. This increase was associated with a much greater capacity of the platelets to accumulate 14C-5-HT. The opposite result was obtained using the platelets from 2 patients with the Hermansky-Pudlak syndrome which contained few granules labelled by mepacrine and took up less 14C-5-HT than normal human platelets. Centrifugation of the patients’ platelets on discontinuous sucrose gradients showed that the platelets of the 2 Bemard-Soulier patients were much denser than normal whereas a high proportion of low density platelets was observed in the Hermansky-Pudlak syndrome. These results further define the platelet abnormalities in the two syndromes and suggest that dense body number may be one of the factors governing platelet density.


1973 ◽  
Vol 74 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Yoshikatsu Nakai ◽  
Hiroo Imura ◽  
Teruya Yoshimi ◽  
Shigeru Matsukura

ABSTRACT In order to determine if an adrenergic mechanism is involved in the secretion of corticotrophin (ACTH), the effect of adrenergic-blocking or -stimulating agent on plasma ACTH, cortisol and glucose levels was studied in normal human subjects. The intravenous infusion of methoxamine, an alpha adrenergic-stimulating agent, caused a rise in plasma ACTH and cortisol. This increase in plasma ACTH and cortisol was significantly inhibited by the simultaneous administration of phentolamine, an alpha adrenergic-blocking agent, in combination with methoxamine. The intravenous infusion of propranolol, a beta adrenergic-blocking agent, caused no significant change in plasma ACTH and cortisol, although it enhanced the plasma ACTH response to insulin-induced hypoglycaemia. On the other hand, alpha adrenergicblockade by intravenous infusion of phentolamine significantly suppressed the plasma ACTH response to insulin-induced hypoglycaemia. These studies suggest a stimulatory effect of alpha receptors and a possible inhibitory effect of beta receptors on ACTH secretion in man.


1996 ◽  
Vol 351 (1346) ◽  
pp. 1455-1462 ◽  

The lateral frontal cortex is involved in various aspects of executive processing within short- and long-term memory. It is argued that the different parts of the lateral frontal cortex make distinct contributions to memory that differ in terms of the level of executive processing that is carried out in interaction with posterior cortical systems. According to this hypothesis, the mid-dorsolateral frontal cortex (areas 46 and 9) is a specialized system for the monitoring and manipulation of information within working memory, whereas the mid-ventrolateral frontal cortex (areas 47/12 and 45) is involved in the active retrieval of information from the posterior cortical association areas. Data are presented which support this two-level hypothesis that posits two distinct levels of interaction of the lateral frontal cortex with posterior cortical association areas. Functional activation studies with normal human subjects have demonstrated specific activity within the mid-dorsolateral region of the frontal cortex during the performance of tasks requiring monitoring of self-generated and externally generated sequences of responses. In the monkey, lesions restricted to this region of the frontal cortex yield a severe impairment in performance of the above tasks, this impairment appearing against a background of normal performance on several basic mnemonic tasks. By contrast, a more severe impairment follows damage to the mid-ventrolateral frontal region and functional activation studies have demonstrated specific changes in activity in this region in relation to the active retrieval of information from memory.


Sign in / Sign up

Export Citation Format

Share Document