scholarly journals Ca2+ Clearance in Visual Motion-Sensitive Neurons of the Fly Studied In Vivo by Sensory Stimulation and UV Photolysis of Caged Ca2+

2004 ◽  
Vol 92 (1) ◽  
pp. 458-467 ◽  
Author(s):  
Rafael Kurtz

In motion-sensitive visual neurons of the fly, excitatory visual stimulation elicits Ca2+ accumulation in dendrites and presynaptic arborizations. Following the cessation of motion stimuli, decay time courses of the cytosolic Ca2+ concentration signals measured with fluorescent dyes were faster in fine arborizations compared with the main branches. When indicators with low Ca2+ affinity were used, the decay of the Ca2+ signals appeared slightly faster than with high affinity dyes, but the dependence of decay kinetics on branch size was preserved. The most parsimonious explanation for faster Ca2+ concentration decline in thin branches compared with thick ones is that the velocity of Ca2+ clearance is limited by transport mechanisms located in the outer membrane and is thus dependent on the neurite's surface-to-volume ratio. This interpretation was corroborated by UV flash photolysis of caged Ca2+ to systematically elicit spatially homogeneous step-like Ca2+ concentration increases of varying amplitude. Clearance of Ca2+ liberated by this method depended on branch size in the same way as Ca2+ accumulated during visual stimulation. Furthermore, the decay time courses of Ca2+ signals were only little affected by the amount of Ca2+ released by photolysis. Thus Ca2+ efflux via the outer membrane is likely to be the main reason for the spatial differences in Ca2+ clearance in visual motion-sensitive neurons of the fly.

1999 ◽  
Vol 82 (6) ◽  
pp. 3286-3297 ◽  
Author(s):  
D. D. Dunning ◽  
C. L. Hoover ◽  
I. Soltesz ◽  
M. A. Smith ◽  
D. K. O'Dowd

Previous studies have described maturational changes in GABAergic inhibitory synaptic transmission in the rodent somatosensory cortex during the early postnatal period. To determine whether alterations in the functional properties of synaptically localized GABAAreceptors (GABAARs) contribute to development of inhibitory transmission, we used the whole cell recording technique to examine GABAergic miniature postsynaptic currents (mPSCs) in developing cortical neurons. Neurons harvested from somatosensory cortices of newborn mice showed a progressive, eightfold increase in GABAergic mPSC frequency during the first 4 wk of development in dissociated cell culture. A twofold decrease in the decay time of the GABAergic mPSCs, between 1 and 4 wk, demonstrates a functional change in the properties of GABAARs mediating synaptic transmission in cortical neurons during development in culture. A similar maturational profile observed in GABAergic mPSC frequency and decay time in cortical neurons developing in vivo (assessed in slices), suggests that these changes in synaptically localized GABAARs contribute to development of inhibition in the rodent neocortex. Pharmacological and reverse transcription-polymerase chain reaction (RT-PCR) studies were conducted to determine whether changes in subunit expression might contribute to the observed developmental alterations in synaptic GABAARs. Zolpidem (300 nM), a subunit-selective benzodiazepine agonist with high affinity for α1-subunits, caused a reversible slowing of the mPSC decay kinetics in cultured cortical neurons. Development was characterized by an increase in the potency of zolpidem in modulating the mPSC decay, suggesting a maturational increase in percentage of functionally active GABAARs containing α1 subunits. The relative expression of α1 versus α5 GABAAR subunit mRNA in cortical tissue, both in vivo and in vitro, also increased during this same period. Furthermore, single-cell RT-multiplex PCR analysis revealed more rapidly decaying mPSCs in individual neurons in which α1 versus α5 mRNA was amplified. Together these data suggest that changes in α-subunit composition of GABAARs contribute to the maturation of GABAergic mPSCs mediating inhibition in developing cortical neurons.


2007 ◽  
Vol 292 (3) ◽  
pp. E946-E951 ◽  
Author(s):  
Gülin Öz ◽  
Elizabeth R. Seaquist ◽  
Anjali Kumar ◽  
Amy B. Criego ◽  
Luke E. Benedict ◽  
...  

The adult brain relies on glucose for its energy needs and stores it in the form of glycogen, primarily in astrocytes. Animal and culture studies indicate that brain glycogen may support neuronal function when the glucose supply from the blood is inadequate and/or during neuronal activation. However, the concentration of glycogen and rates of its metabolism in the human brain are unknown. We used in vivo localized 13C-NMR spectroscopy to measure glycogen content and turnover in the human brain. Nine healthy volunteers received intravenous infusions of [1-13C]glucose for durations ranging from 6 to 50 h, and brain glycogen labeling and washout were measured in the occipital lobe for up to 84 h. The labeling kinetics suggest that turnover is the main mechanism of label incorporation into brain glycogen. Upon fitting a model of glycogen metabolism to the time courses of newly synthesized glycogen, human brain glycogen content was estimated at ∼3.5 μmol/g, i.e., three- to fourfold higher than free glucose at euglycemia. Turnover of bulk brain glycogen occurred at a rate of 0.16 μmol·g−1·h−1, implying that complete turnover requires 3–5 days. Twenty minutes of visual stimulation ( n = 5) did not result in detectable glycogen utilization in the visual cortex, as judged from similar [13C]glycogen levels before and after stimulation. We conclude that the brain stores a substantial amount of glycogen relative to free glucose and metabolizes this store very slowly under normal physiology.


2005 ◽  
Vol 187 (6) ◽  
pp. 1913-1922 ◽  
Author(s):  
Anindya S. Ghosh ◽  
Kevin D. Young

ABSTRACT In bacteria, several physiological processes once thought to be the products of uniformly dispersed reactions are now known to be highly asymmetric, with some exhibiting interesting geometric localizations. In particular, the cell envelope of Escherichia coli displays a form of subcellular differentiation in which peptidoglycan and outer membrane proteins at the cell poles remain stable for generations while material in the lateral walls is diluted by growth and turnover. To determine if material in the side walls was organized in any way, we labeled outer membrane proteins with succinimidyl ester-linked fluorescent dyes and then grew the stained cells in the absence of dye. Labeled proteins were not evenly dispersed in the envelope but instead appeared as helical ribbons that wrapped around the outside of the cell. By staining the O8 surface antigen of E. coli 2443 with a fluorescent derivative of concanavalin A, we observed a similar helical organization for the lipopolysaccharide (LPS) component of the outer membrane. Fluorescence recovery after photobleaching indicated that some of the outer membrane proteins remained freely diffusible in the side walls and could also diffuse into polar domains. On the other hand, the LPS O antigen was virtually immobile. Thus, the outer membrane of E. coli has a defined in vivo organization in which a subfraction of proteins and LPS are embedded in stable domains at the poles and along one or more helical ribbons that span the length of this gram-negative rod.


2016 ◽  
Vol 55 (02) ◽  
pp. 51-62 ◽  
Author(s):  
S. Hermann ◽  
M. Schäfers ◽  
C. Höltke ◽  
A. Faust

SummaryOptical imaging has long been considered a method for histological or microscopic investigations. Over the last 15 years, however, this method was applied for preclinical molecular imaging and, just recently, was also able to show its principal potential for clinical applications (e.g. fluorescence-guided surgery). Reviewing the development and preclinical evaluation of new fluorescent dyes and target-specific dye conjugates, these often show characteristic patterns of their routes of excretion and biodistribution, which could also be interesting for the development and optimization of radiopharmaceuticals. Especially ionic charges show a great influence on biodistribution and netcharge and charge-distribution on a conjugate often determines unspecific binding or background signals in liver, kidney or intestine, and other organs.Learning from fluorescent probe behaviour in vivo and translating this knowledge to radio-pharmaceuticals might be useful to further optimize emerging and existing radiopharmaceuticals with respect to their biodistribution and thereby availability for binding to their targets.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Eslam Mounier ◽  
Bassem Abdullah ◽  
Hani Mahdi ◽  
Seif Eldawlatly

AbstractThe Lateral Geniculate Nucleus (LGN) represents one of the major processing sites along the visual pathway. Despite its crucial role in processing visual information and its utility as one target for recently developed visual prostheses, it is much less studied compared to the retina and the visual cortex. In this paper, we introduce a deep learning encoder to predict LGN neuronal firing in response to different visual stimulation patterns. The encoder comprises a deep Convolutional Neural Network (CNN) that incorporates visual stimulus spatiotemporal representation in addition to LGN neuronal firing history to predict the response of LGN neurons. Extracellular activity was recorded in vivo using multi-electrode arrays from single units in the LGN in 12 anesthetized rats with a total neuronal population of 150 units. Neural activity was recorded in response to single-pixel, checkerboard and geometrical shapes visual stimulation patterns. Extracted firing rates and the corresponding stimulation patterns were used to train the model. The performance of the model was assessed using different testing data sets and different firing rate windows. An overall mean correlation coefficient between the actual and the predicted firing rates of 0.57 and 0.7 was achieved for the 10 ms and the 50 ms firing rate windows, respectively. Results demonstrate that the model is robust to variability in the spatiotemporal properties of the recorded neurons outperforming other examined models including the state-of-the-art Generalized Linear Model (GLM). The results indicate the potential of deep convolutional neural networks as viable models of LGN firing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sam Wong ◽  
Simone Alidori ◽  
Barbara P. Mello ◽  
Bryan Aristega Almeida ◽  
David Ulmert ◽  
...  

AbstractCellulose nanocrystals (CNC) are linear organic nanomaterials derived from an abundant naturally occurring biopolymer resource. Strategic modification of the primary and secondary hydroxyl groups on the CNC introduces amine and iodine group substitution, respectively. The amine groups (0.285 mmol of amine per gram of functionalized CNC (fCNC)) are further reacted with radiometal loaded-chelates or fluorescent dyes as tracers to evaluate the pharmacokinetic profile of the fCNC in vivo. In this way, these nanoscale macromolecules can be covalently functionalized and yield water-soluble and biocompatible fibrillar nanoplatforms for gene, drug and radionuclide delivery in vivo. Transmission electron microscopy of fCNC reveals a length of 162.4 ± 16.3 nm, diameter of 11.2 ± 1.52 nm and aspect ratio of 16.4 ± 1.94 per particle (mean ± SEM) and is confirmed using atomic force microscopy. Size exclusion chromatography of macromolecular fCNC describes a fibrillar molecular behavior as evidenced by retention times typical of late eluting small molecules and functionalized carbon nanotubes. In vivo, greater than 50% of intravenously injected radiolabeled fCNC is excreted in the urine within 1 h post administration and is consistent with the pharmacological profile observed for other rigid, high aspect ratio macromolecules. Tissue distribution of fCNC shows accumulation in kidneys, liver, and spleen (14.6 ± 6.0; 6.1 ± 2.6; and 7.7 ± 1.4% of the injected activity per gram of tissue, respectively) at 72 h post-administration. Confocal fluorescence microscopy reveals cell-specific accumulation in these target tissue sinks. In summary, our findings suggest that functionalized nanocellulose can be used as a potential drug delivery platform for the kidneys.


2007 ◽  
Vol 88 (11) ◽  
pp. 2977-2984 ◽  
Author(s):  
Don Stoltz ◽  
Renée Lapointe ◽  
Andrea Makkay ◽  
Michel Cusson

Unlike most viruses, the mature ichnovirus particle possesses two unit membrane envelopes. Following loss of the outer membrane in vivo, nucleocapsids are believed to gain entry into the cytosol via a membrane fusion event involving the inner membrane and the plasma membrane of susceptible host cells; accordingly, experimentally induced damage to the outer membrane might be expected to increase infectivity. Here, in an attempt to develop an in vitro model system for studying ichnovirus infection, we show that digitonin-induced disruption of the virion outer membrane not only increases infectivity, but also uncovers an activity not previously associated with any polydnavirus: fusion from without.


2014 ◽  
Vol 25 (25) ◽  
pp. 3999-4009 ◽  
Author(s):  
Agnieszka Gornicka ◽  
Piotr Bragoszewski ◽  
Piotr Chroscicki ◽  
Lena-Sophie Wenz ◽  
Christian Schulz ◽  
...  

Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex.


Sign in / Sign up

Export Citation Format

Share Document