scholarly journals pH modulation of glial glutamate transporters regulates synaptic transmission in the nucleus of the solitary tract

2013 ◽  
Vol 110 (2) ◽  
pp. 368-377 ◽  
Author(s):  
Rafiq Huda ◽  
Donald R. McCrimmon ◽  
Marco Martina

The nucleus of the solitary tract (NTS) is the major site for termination of visceral sensory afferents contributing to homeostatic regulation of, for example, arterial pressure, gastric motility, and breathing. Whereas much is known about how different neuronal populations influence these functions, information about the role of glia remains scant. In this article, we propose that glia may contribute to NTS functions by modulating excitatory neurotransmission. We found that acidification (pH 7.0) depolarizes NTS glia by inhibiting K+-selective membrane currents. NTS glia also showed functional expression of voltage-sensitive glutamate transporters, suggesting that extracellular acidification regulates synaptic transmission by compromising glial glutamate uptake. To test this hypothesis, we evoked glutamatergic slow excitatory potentials (SEPs) in NTS neurons with repetitive stimulation (20 pulses at 10 Hz) of the solitary tract. This SEP depends on accumulation of glutamate following repetitive stimulation, since it was potentiated by blocking glutamate uptake with dl- threo-β-benzyloxyaspartic acid (TBOA) or a glia-specific glutamate transport blocker, dihydrokainate (DHK). Importantly, extracellular acidification (pH 7.0) also potentiated the SEP. This effect appeared to be mediated through a depolarization-induced inhibition of glial transporter activity, because it was occluded by TBOA and DHK. In agreement, pH 7.0 did not directly alter d-aspartate-induced responses in NTS glia or properties of presynaptic glutamate release. Thus acidification-dependent regulation of glial function affects synaptic transmission within the NTS. These results suggest that glia play a modulatory role in the NTS by integrating local tissue signals (such as pH) with synaptic inputs from peripheral afferents.

Open Biology ◽  
2017 ◽  
Vol 7 (7) ◽  
pp. 170032 ◽  
Author(s):  
Tomoko Oshima-Takago ◽  
Hideki Takago

N -Methyl- d -aspartate receptors (NMDARs) play diverse roles in synaptic transmission, synaptic plasticity, neuronal development and neurological diseases. In addition to their postsynaptic expression, NMDARs are also expressed in presynaptic terminals at some central synapses, and their activation modulates transmitter release. However, the regulatory mechanisms of NMDAR-dependent synaptic transmission remain largely unknown. In the present study, we demonstrated that activation of NMDARs in a nerve terminal at a central glutamatergic synapse inhibits presynaptic Ca 2+ currents (I Ca ) in a GluN2C/2D subunit-dependent manner, thereby decreasing nerve-evoked excitatory postsynaptic currents. Neither presynaptically loaded fast Ca 2+ chelator BAPTA nor non-hydrolysable GTP analogue GTPγS affected NMDAR-mediated I Ca inhibition. In the presence of a glutamate uptake blocker, the decline in I Ca amplitude evoked by repetitive depolarizing pulses at 20 Hz was attenuated by an NMDAR competitive antagonist, suggesting that endogenous glutamate has a potential to activate presynaptic NMDARs. Moreover, NMDA-induced inward currents at a negative holding potential (−80 mV) were abolished by intra-terminal loading of the NMDAR open channel blocker MK-801, indicating functional expression of presynaptic NMDARs. We conclude that presynaptic NMDARs can attenuate glutamate release by inhibiting voltage-gated Ca 2+ channels at a relay synapse in the immature rat auditory brainstem.


2018 ◽  
Vol 314 (2) ◽  
pp. R282-R293 ◽  
Author(s):  
D. A. Carter ◽  
H. Guo ◽  
A. A. Connelly ◽  
J. K. Bassi ◽  
A. Y. Fong ◽  
...  

Homeostatic regulation of visceral organ function requires integrated processing of neural and neurohormonal sensory signals. The nucleus of the solitary tract (NTS) is the primary sensory nucleus for cranial visceral sensory afferents. Angiotensin II (ANG II) is known to modulate peripheral visceral reflexes, in part, by activating ANG II type 1A receptors (AT1AR) in the NTS. AT1AR-expressing NTS neurons occur throughout the NTS with a defined subnuclear distribution, and most of these neurons are depolarized by ANG II. In this study we determined whether AT1AR-expressing NTS neurons receive direct visceral sensory input, and whether this input is modulated by ANG II. Using AT1AR-GFP mice to make targeted whole cell recordings from AT1AR-expressing NTS neurons, we demonstrate that two-thirds (37 of 56) of AT1AR-expressing neurons receive direct excitatory, visceral sensory input. In half of the neurons tested (4 of 8) the excitatory visceral sensory input was significantly reduced by application of the transient receptor potential vallinoid type 1 receptor agonist, capsaicin, indicating AT1AR-expressing neurons can receive either C- or A-fiber-mediated input. Application of ANG II to a subset of second-order AT1AR-expressing neurons did not affect spontaneous, evoked, or asynchronous glutamate release from visceral sensory afferents. Thus it is unlikely that AT1AR-expressing viscerosensory neurons terminate on AT1AR-expressing NTS neurons. Our data suggest that ANG II is likely to modulate multiple visceral sensory modalities by altering the excitability of second-order AT1AR-expressing NTS neurons.


2008 ◽  
Vol 295 (5) ◽  
pp. H2032-H2042 ◽  
Author(s):  
Michael C. Andresen ◽  
James H. Peters

Cranial nerve visceral afferents enter the brain stem to synapse on neurons within the solitary tract nucleus (NTS). The broad heterogeneity of both visceral afferents and NTS neurons makes understanding afferent synaptic transmission particularly challenging. To study a specific subgroup of second-order neurons in medial NTS, we anterogradely labeled arterial baroreceptor afferents of the aortic depressor nerve (ADN) with lipophilic fluorescent tracer (i.e., ADN+) and measured synaptic responses to solitary tract (ST) activation recorded from dye-identified neurons in medial NTS in horizontal brain stem slices. Every ADN+ NTS neuron received constant-latency ST-evoked excitatory postsynaptic currents (EPSCs) (jitter <192 μs, SD of latency). Stimulus-recruitment profiles showed single thresholds and no suprathreshold recruitment, findings consistent with EPSCs arising from a single, branched afferent axon. Frequency-dependent depression of ADN+ EPSCs averaged ∼70% for five shocks at 50 Hz, but single-shock failure rates did not exceed 4%. Whether adjacent ADN− or those from unlabeled animals, other second-order NTS neurons (jitters <200 μs) had ST transmission properties indistinguishable from ADN+. Capsaicin (CAP; 100 nM) blocked ST transmission in some neurons. CAP-sensitive ST-EPSCs were smaller and failed over five times more frequently than CAP-resistant responses, whether ADN+ or from unlabeled animals. Variance-mean analysis of ST-EPSCs suggested uniformly high probabilities for quantal glutamate release across second-order neurons. While amplitude differences may reflect different numbers of contacts, higher frequency-dependent failure rates in CAP-sensitive ST-EPSCs may arise from subtype-specific differences in afferent axon properties. Thus afferent transmission within medial NTS differed by axon class (e.g., CAP sensitive) but was indistinguishable by source of axon (e.g., baroreceptor vs. nonbaroreceptor).


2000 ◽  
Vol 83 (5) ◽  
pp. 2519-2525 ◽  
Author(s):  
D. Ieuan Evans ◽  
Roland S. G. Jones ◽  
Gavin Woodhall

The role of group III metabotropic glutamate receptors (mGluRs) in modulating excitatory synaptic transmission was investigated in the rat entorhinal cortex (EC) in vitro. AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) were recorded in the whole cell configuration of the patch-clamp technique from visually identified neurons in layers V and II. In layer V, bath application of the specific group III mGluR agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4, 500 μM) resulted in a marked facilitation of both spontaneous and activity-independent “miniature” (s/mEPSC) event frequency. The facilitatory effect of L-AP4 (100 μM) on sEPSC frequency prevailed in the presence ofdl−2-amino-5-phosphonopentanoic acid (100 μM) but was abolished by the group III antagonist (RS)-cyclopropyl-4-phosphonophenylglycine (20 μM). These data confirmed that group III mGluRs, and not N-methyl-d-aspartate (NMDA) receptors were involved in the response to L-AP4. Bath application of the specific mGluR4a agonist (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (20 μM) also had a facilitatory effect on sEPSC frequency, suggesting involvement of mGluR4a. In layer II neurons, L-AP4 caused a reduction in sEPSC frequency but did not affect mEPSCs recorded in the presence of tetrodotoxin. These findings suggest that a group III mGluR with mGluR4a-like pharmacology is involved in modulating synaptic transmission in layer V cells of the EC. The effect on mEPSCs suggests that this receptor is located presynaptically and that its activation results in a direct facilitation of glutamate release. This novel facilitatory effect is specific to layer V and, to our knowledge, is the first report of a direct facilitatory action of group III mGluRs on synaptic transmission. In layer II, L-AP4 had an inhibitory effect on glutamate release similar to that reported in other brain regions.


2005 ◽  
Vol 94 (6) ◽  
pp. 4131-4144 ◽  
Author(s):  
Ling Chen ◽  
Masahiro Sokabe

The effects of pregnenolone sulfate (PREGS), a putative neurosteroid, on the transmission of perforant path–granule cell synapses were investigated with an optical recording technique in rat hippocampal slices stained with voltage-sensitive dyes. Application of PREGS to the bath solution resulted in an acute augmentation of EPSP in a dose-dependent manner. The PREGS effect was dependent on the extracellular Ca2+ concentration ([Ca2+]o), but independent of NMDA receptor activation. PREGS caused a decrease in paired-pulse facilitation, which implies that PREGS positively modulates presynaptic neurotransmitter releases. Firmer support for this mechanism was that PREGS augmented the synaptically induced glial depolarization (SIGD) that reflects the activity of electrogenic glutamate transporters in glial cells during the uptake of released glutamate. The selective α7nAChR antagonist α-BGT or MLA prevented the SIGD increase by PREGS. Furthermore DMXB, a selective α7nAChR agonist, mimicked the PREGS effect on SIGD and antagonized the effect of PREGS. The presynaptic effect of PREGS was partially attenuated by the L-type Ca2+ channel (VGCC) blocker nifedipine. Based on these findings, we proposed a novel mechanism underlying the facilitated synaptic transmission by PREGS: this neurosteroid sensitizes presynaptic α7nAChR that is followed by an activation of L-type VGCC to increase the presynaptic glutamate release.


2004 ◽  
Vol 27 (6) ◽  
pp. 817-820 ◽  
Author(s):  
Atsushi Nishida ◽  
Hiroshi Iwata ◽  
Yukitsuka Kudo ◽  
Tsutomu Kobayashi ◽  
Yuzo Matsuoka ◽  
...  

2007 ◽  
Vol 27 (7) ◽  
pp. 1327-1338 ◽  
Author(s):  
Cristina Romera ◽  
Olivia Hurtado ◽  
Judith Mallolas ◽  
Marta P Pereira ◽  
Jesús R Morales ◽  
...  

Excessive levels of extracellular glutamate in the nervous system are excitotoxic and lead to neuronal death. Glutamate transport, mainly by glutamate transporter GLT1/EAAT2, is the only mechanism for maintaining extracellular glutamate concentrations below excitotoxic levels in the central nervous system. We recently showed that neuroprotection after experimental ischemic preconditioning (IPC) involves, at least partly, the upregulation of the GLT1/EAAT2 glutamate transporter in astrocytes, but the mechanisms were unknown. Thus, we decided to explore whether activation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)γ, known for its antidiabetic and antiinflammatory properties, is involved in glutamate transport. First, we found that the PPARγ antagonist T0070907 inhibits both IPC-induced tolerance and reduction of glutamate release after lethal oxygen-glucose deprivation (OGD) (70.1% ± 3.4% versus 97.7% ± 5.2% of OGD-induced lactate dehydrogenase (LDH) release and 61.8% ± 5.9% versus 85.9% ± 7.9% of OGD-induced glutamate release in IPC and IPC + T0070907 1 μmol/L, respectively, n = 6 to 12, P < 0.05), as well as IPC-induced astrocytic GLT-1 overexpression. IPC also caused an increase in nuclear PPARγ transcriptional activity in neurons and astrocytes (122.1% ± 8.1% and 158.6% ± 22.6% of control PPARγ transcriptional activity, n = 6, P < 0.05). Second, the PPARγ agonist rosiglitazone increased both GLT-1/EAAT2 mRNA and protein expression and [3H]glutamate uptake, and reduced OGD-induced cell death and glutamate release (76.3% ± 7.9% and 65.5% ± 15.1% of OGD-induced LDH and glutamate release in rosiglitazone 1 μmol/l, respectively, n = 6 to 12, P < 0.05). Finally, we have identified six putative PPAR response elements (PPREs) in the GLT1/EAAT2 promoter and, consistently, rosiglitazone increased fourfold GLT1/EAAT2 promoter activity. All these data show that the GLT1/EAAT2 glutamate transporter is a target gene of PPARγ leading to neuroprotection by increasing glutamate uptake.


2019 ◽  
Author(s):  
Yun Zhu ◽  
Dainan Li ◽  
Hai Huang

ABSTRACTRetrieval of synaptic vesicles via endocytosis is essential for maintaining sustained synaptic transmission, especially for neurons that fire action potentials at high frequencies. However, how activity regulates synaptic vesicles recycling is largely unknown. Here we report that Na+ substantially accumulated in the mouse calyx of Held terminals during repetitive high-frequency spiking. Elevated presynaptic Na+ accelerated both slow and rapid forms of endocytosis and facilitated endocytosis overshoot but did not affect the readily releasable pool size, Ca2+ influx, or exocytosis. To examine whether this facilitation of endocytosis is related to the Na+-dependent vesicular content change, we dialyzed increasing concentrations of glutamate into the presynaptic cytosol or blocked the vesicular glutamate uptake with bafilomycin and found the rate of endocytosis was not affected by regulating the glutamate content in the presynaptic terminal. Endocytosis is critically dependent on intracellular Ca2+, and the activity of Na+/Ca2+ exchanger (NCX) may be altered when the Na+ gradient is changed. However, neither NCX blocker nor change of extracellular Na+ concentration affected the endocytosis rate. Moreover, two-photon Ca2+ imaging showed that presynaptic Na+ did not affect the action potential-evoked intracellular Ca2+ transient and decay. Therefore, we revealed a novel mechanism of cytosolic Na+ in accelerating vesicle endocytosis. During high-frequency synaptic transmission, when large amounts of synaptic vesicles are fused, Na+ accumulated in terminals, facilitated vesicle recycling and sustained reliable synaptic transmission.


Sign in / Sign up

Export Citation Format

Share Document