scholarly journals Role for the Subthreshold Currents ILeak and IH in the Homeostatic Control of Excitability in Neocortical Somatostatin-Positive Inhibitory Neurons

2006 ◽  
Vol 96 (1) ◽  
pp. 420-432 ◽  
Author(s):  
Jay R. Gibson ◽  
Aundrea F. Bartley ◽  
Kimberly M. Huber

Cortical circuitry reconfigures in response to chronic (1–3 days) changes in activity levels. To understand this process, we must know the role played by inhibitory neurons because they crucially influence network properties by controlling action potential generation and synaptic integration. Using pharmacological blockade of activity in neocortical organotypic slice cultures, we examined the activity-dependent regulation of membrane excitability in a specific inhibitory neuron subtype: the somatostatin-positive (SOM+) neuron. Chronic action potential blockade (TTX, 2.5 days) resulted in increased excitability in SOM+ neurons. This result is consistent with a homeostatic process to maintain the average firing rate of SOM+ neurons at a particular level. Excitability changes were not ascribed to changing cell size or alterations in voltage-dependent sodium current. Instead, the excitability increase was largely the result of a decrease in the density of two subthreshold currents: a passive leak current ( ILeak) and H-current ( IH). The downregulation of these currents increased excitability mostly through a decrease in membrane input conductance. The coadaptation of ILeak and IH enabled a change in input conductance while helping to preserve membrane potential. Evidence indicated that ILeak was probably mainly mediated by K+. At earlier culture ages, this adaptation was superimposed on developmental changes, whereas at older ages, the same types of induced alterations occurred but with no developmental component. Together with other studies, these data indicate that both inhibitory and excitatory neurons increase membrane excitability with chronic reduction in activity, but through different mechanisms.

1998 ◽  
Vol 274 (3) ◽  
pp. C577-C585 ◽  
Author(s):  
Gui-Rong Li ◽  
Haiying Sun ◽  
Stanley Nattel

The threshold potential for the classical depolarization-activated transient outward K+ current and Cl− current is positive to −30 mV. With the whole cell patch technique, a transient outward current was elicited in the presence of 5 mM 4-aminopyridine (4-AP) and 5 μM ryanodine at voltages positive to the K+ equilibrium potential in canine ventricular myocytes. The current was abolished by 200 μM Ba2+ or omission of external K+([Formula: see text]) and showed biexponential inactivation. The current-voltage relation for the peak of the transient outward component showed moderate inward rectification. The transient outward current demonstrated voltage-dependent inactivation (half-inactivation voltage: −43.5 ± 3.2 mV) and rapid, monoexponential recovery from inactivation (time constant: 13.2 ± 2.5 ms). The reversal potential responded to the changes in[Formula: see text] concentration. Action potential clamp revealed two phases of Ba2+-sensitive current during the action potential, including a large early transient component after the upstroke and a later outward component during phase 3 repolarization. The present study demonstrates that depolarization may elicit a Ba2+- and[Formula: see text]-sensitive, 4-AP-insensitive, transient outward current with inward rectification in canine ventricular myocytes. The properties of this K+ current suggest that it may carry a significant early outward current upon depolarization that may play a role in determining membrane excitability and action potential morphology.


1998 ◽  
Vol 80 (2) ◽  
pp. 493-503 ◽  
Author(s):  
Egidio D'Angelo ◽  
Giovanna De Filippi ◽  
Paola Rossi ◽  
Vanni Taglietti

D'Angelo, Egidio, Giovanna De Filippi, Paola Rossi, and Vanni Taglietti. Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. J. Neurophysiol. 80: 493–503, 1998. Although substantial knowledge has been accumulated on cerebellar granule cell voltage-dependent currents, their role in regulating electroresponsiveness has remained speculative. In this paper, we have used patch-clamp recording techniques in acute slice preparations to investigate the ionic basis of electroresponsiveness of rat cerebellar granule cells at a mature developmental stage. The granule cell generated a Na+-dependent spike discharge resistant to voltage and time inactivation, showing a linear frequency increase with injected currents. Action potentials arose when subthreshold depolarizing potentials, which were driven by a persistent Na+ current, reached a critical threshold. The stability and linearity of the repetitive discharge was based on a complex mechanism involving a N-type Ca2+ current blocked by ω-CTx GVIA, and a Ca2+-dependent K+ current blocked by charibdotoxin and low tetraethylammonium (TEA; <1 mM); a voltage-dependent Ca2+-independent K+ current blocked by high TEA (>1 mM); and an A current blocked by 2 mM 4-aminopyridine. Weakening TEA-sensitive K+ currents switched the granule cell into a bursting mode sustained by the persistent Na+ current. A dynamic model is proposed in which the Na+ current-dependent action potential causes secondary Ca2+ current activation and feedback voltage- and Ca2+-dependent afterhyperpolarization. The afterhyperpolarization reprimes the channels inactivated in the spike, preventing adaptation and bursting and controlling the duration of the interspike interval and firing frequency. This result reveals complex dynamics behind repetitive spike discharge and suggests that a persistent Na+ current plays an important role in action potential initiation and in the regulation of mossy fiber-granule cells transmission.


2005 ◽  
Vol 93 (5) ◽  
pp. 2710-2722 ◽  
Author(s):  
Nanping Wu ◽  
Akifumi Enomoto ◽  
Susumu Tanaka ◽  
Chie-Fang Hsiao ◽  
Duane Q. Nykamp ◽  
...  

The functional and biophysical properties of a persistent sodium current ( INaP) previously proposed to participate in the generation of subthreshold oscillations and burst discharge in mesencephalic trigeminal sensory neurons (Mes V) were investigated in brain stem slices (rats, p7–p12) using whole cell patch-clamp methods. INaP activated around −76 mV and peaked at −48 mV, with V1/2 of −58.7 mV. Ramp voltage-clamp protocols showed that INaP undergoes time- as well as voltage-dependent inactivation and recovery from inactivation in the range of several seconds (τonset = 2.04 s, τrecov = 2.21 s). Riluzole (≤5 μM) substantially reduced INaP, membrane resonance, postinhibitory rebound (PIR), and subthreshold oscillations, and completely blocked bursting, but produced modest effects on the fast transient Na+ current ( INaT). Before complete cessation, burst cycle duration was increased substantially, while modest and inconsistent changes in burst duration were observed. The properties of the INaT were obtained and revealed that the amplitude and voltage dependence of the resulting “window current” were not consistent with those of the observed INaP recorded in the same neurons. This suggests an additional mechanism for the origin of INaP. A neuronal model was constructed using Hodgkin-Huxley parameters obtained experimentally for Na+ and K+ currents that simulated the experimentally observed membrane resonance, subthreshold oscillations, bursting, and PIR. Alterations in the model gNaP parameters indicate that INaP is critical for control of subthreshold and suprathreshold Mes V neuron membrane excitability and burst generation.


2008 ◽  
Vol 100 (4) ◽  
pp. 1983-1994 ◽  
Author(s):  
Aundrea F. Bartley ◽  
Z. Josh Huang ◽  
Kimberly M. Huber ◽  
Jay R. Gibson

Chronic changes in neuronal activity homeostatically regulate excitatory circuitry. However, little is known about how activity regulates inhibitory circuits or specific inhibitory neuron types. Here, we examined the activity-dependent regulation of two neocortical inhibitory circuits—parvalbumin-positive (Parv+) and somatostatin-positive (Som+)—using paired recordings of synaptically coupled neurons. Action potentials were blocked for 5 days in slice culture, and unitary synaptic connections among inhibitory/excitatory neuron pairs were examined. Chronic activity blockade caused similar and distinct changes between the two inhibitory circuits. First, increases in intrinsic membrane excitability and excitatory synaptic drive in both inhibitory subtypes were consistent with the homeostatic regulation of firing rate of these neurons. On the other hand, inhibitory synapses originating from these two subtypes were differentially regulated by activity blockade. Parv+ unitary inhibitory postsynaptic current (uIPSC) strength was decreased while Som+ uIPSC strength was unchanged. Using short-duration stimulus trains, short-term plasticity for both unitary excitatory postsynaptic current (uEPSCs) and uIPSCs was unchanged in Parv+ circuitry while distinctively altered in Som+ circuitry—uEPSCs became less facilitating and uIPSCs became more depressing. In the context of recurrent inhibition, these changes would result in a frequency-dependent shift in the relative influence of each circuit. The functional changes at both types of inhibitory connections appear to be mediated by increases in presynaptic release probability and decreases in synapse number. Interestingly, these opposing changes result in decreased Parv+-mediated uIPSCs but balance out to maintain normal Som+-mediated uIPSCs. In summary, these results reveal that inhibitory circuitry is not uniformly regulated by activity levels and may provide insight into the mechanisms of both normal and pathological neocortical plasticity.


2021 ◽  
Vol 22 (10) ◽  
pp. 5113
Author(s):  
Jae-Yeon Kim ◽  
Mercedes F. Paredes

A prolonged developmental timeline for GABA (γ-aminobutyric acid)-expressing inhibitory neurons (GABAergic interneurons) is an amplified trait in larger, gyrencephalic animals. In several species, the generation, migration, and maturation of interneurons take place over several months, in some cases persisting after birth. The late integration of GABAergic interneurons occurs in a region-specific pattern, especially during the early postnatal period. These changes can contribute to the formation of functional connectivity and plasticity, especially in the cortical regions responsible for higher cognitive tasks. In this review, we discuss GABAergic interneuron development in the late gestational and postnatal forebrain. We propose the protracted development of interneurons at each stage (neurogenesis, neuronal migration, and network integration), as a mechanism for increased complexity and cognitive flexibility in larger, gyrencephalic brains. This developmental feature of interneurons also provides an avenue for environmental influences to shape neural circuit formation.


2021 ◽  
Vol 5 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Marvin Ruiter ◽  
Christine Lützkendorf ◽  
Jian Liang ◽  
Corette J. Wierenga

The amyloid-β protein precursor is highly expressed in a subset of inhibitory neuron in the hippocampus, and inhibitory neurons have been suggested to play an important role in early Alzheimer’s disease plaque load. Here we investigated bouton dynamics in axons of hippocampal interneurons in two independent amyloidosis models. Short-term (24 h) amyloid-β (Aβ)-oligomer application to organotypic hippocampal slices slightly increased inhibitory bouton dynamics, but bouton density and dynamics were unchanged in hippocampus slices of young-adult AppNL - F - G-mice, in which Aβ levels are chronically elevated. These results indicate that loss or defective adaptation of inhibitory synapses are not a major contribution to Aβ-induced hyperexcitability.


1961 ◽  
Vol 45 (2) ◽  
pp. 317-330 ◽  
Author(s):  
Wolfgang Trautwein ◽  
Donald G. Kassebaum

Rhythmic activity in Purkinje fibers of sheep and in fibers of the rabbit sinus can be produced or enhanced when a constant depolarizing current is applied. When extracellular calcium is reduced successively, the required current strength is less, and eventually spontaneous beating occurs. These effects are believed due to an increase in steady-state sodium conductance. A significant hyperpolarization occurs in fibers of the rabbit sinus bathed in a sodium-free medium, suggesting an appreciable sodium conductance of the "resting" membrane. During diastole, there occurs a voltage-dependent and, to a smaller extent, time-dependent reduction in potassium conductance, and a pacemaker potential occurs as a result of a large resting sodium conductance. It is postulated that the mechanism underlying the spontaneous heart beat is a high resting sodium current in pacemaker tissue which acts as the generator of the heart beat when, after a regenerative repolarization, the decrease in potassium conductance during diastole reestablishes the condition of threshold.


2015 ◽  
Vol 114 (2) ◽  
pp. 1146-1157 ◽  
Author(s):  
V. Carmean ◽  
M. A. Yonkers ◽  
M. B. Tellez ◽  
J. R. Willer ◽  
G. B. Willer ◽  
...  

The study of touch-evoked behavior allows investigation of both the cells and circuits that generate a response to tactile stimulation. We investigate a touch-insensitive zebrafish mutant, macho (maco), previously shown to have reduced sodium current amplitude and lack of action potential firing in sensory neurons. In the genomes of mutant but not wild-type embryos, we identify a mutation in the pigk gene. The encoded protein, PigK, functions in attachment of glycophosphatidylinositol anchors to precursor proteins. In wild-type embryos, pigk mRNA is present at times when mutant embryos display behavioral phenotypes. Consistent with the predicted loss of function induced by the mutation, knock-down of PigK phenocopies maco touch insensitivity and leads to reduced sodium current (INa) amplitudes in sensory neurons. We further test whether the genetic defect in pigk underlies the maco phenotype by overexpressing wild-type pigk in mutant embryos. We find that ubiquitous expression of wild-type pigk rescues the touch response in maco mutants. In addition, for maco mutants, expression of wild-type pigk restricted to sensory neurons rescues sodium current amplitudes and action potential firing in sensory neurons. However, expression of wild-type pigk limited to sensory cells of mutant embryos does not allow rescue of the behavioral touch response. Our results demonstrate an essential role for pigk in generation of the touch response beyond that required for maintenance of proper INa density and action potential firing in sensory neurons.


1986 ◽  
Vol 55 (1) ◽  
pp. 113-130 ◽  
Author(s):  
R. Kretz ◽  
E. Shapiro ◽  
E. R. Kandel

We have examined the synaptic conductance mechanisms underlying presynaptic inhibition in Aplysia californica in a circuit in which all the neural elements are identified cells (Fig. 1). L10 makes connections to identified follower cells (RB and left upper quadrant cells, L2-L6). These connections are presynaptically inhibited by stimulating cells of the L32 cluster (4). L32 cells produce a slow inhibitory synaptic potential on L10. This inhibitory synaptic potential is associated with an apparent increased membrane conductance in L10. Both the inhibitory postsynaptic potential (IPSP) and the conductance increase are voltage dependent; the IPSP could not be reversed by hyperpolarizing the membrane potentials to - 120 mV. The hyperpolarization of L10 induced by L32 reduces the transmitter output of L10 and thereby contributes to presynaptic inhibition. However, this hyperpolarization accounts for about 30% of the effect because presynaptic inhibition can still be observed even when the hyperpolarization of L10 by L32 is prevented by voltage clamping. When L10 is voltage clamped, stimulation of L32 produces a slow outward synaptic current associated with an apparent increased conductance. Both the synaptic current and conductance change measured under clamp are voltage dependent, and the outward current could not be reversed. This synaptic current is not mediated by an increase in C1- conductance. It is sensitive to external K+ concentration, especially at hyperpolarized membrane potentials. With L10 under voltage clamp, stimulation of L32 also reduces a slow inward current in L10. This current has time and voltage characteristics similar to those of the Ca2+ current. Presynaptic inhibition is still produced by L32 when L10 is voltage clamped, and transmitter release is elicited by depolarizing voltage-clamp pulses. This component of presynaptic inhibition, which accounts for approximately 70% of the inhibition, appears to be due to a decrease in the Ca2+ current in the presynaptic neuron.


2019 ◽  
Author(s):  
Muhmmad Omar-Hmeadi ◽  
Per-Eric Lund ◽  
Nikhil R Gandasi ◽  
Anders Tengholm ◽  
Sebastian Barg

AbstractGlucagon is secreted from pancreatic α-cells to activate gluconeogenesis and other pathways that raise blood glucose during hypoglycemia. Glucose-dependent regulation of glucagon secretion involves both α-cell-intrinsic mechanisms and paracrine control through insulin and somatostatin. In type-2 diabetes (T2D) inadequately high glucagon levels contribute to hyperglycemia. To understand these disease-associated changes at the cellular level, and to isolate intrinsic and paracrine effects, we analyzed glucagon granule exocytosis and membrane excitability in isolated α-cells from 56 non-diabetic (ND) and 15 T2D human donors. High resolution imaging showed that glucagon granule exocytosis had a U-shaped sensitivity to glucose, with the slowest rate around 7 mM glucose, and accelerated rates at <5 and >10 mM glucose. Exocytosis was reduced in T2D α-cells, but their glucose sensitivity remained intact and there were no changes in voltage-dependent ion currents or granule trafficking. Instead, α-cells from T2D donors were markedly insensitive to somatostatin and insulin, which rapidly inhibited exocytosis and electrical activity in ND cells. Thus, intrinsic mechanisms do not inhibit glucagon secretion at hyperglycemia, and elevated glucagon levels in human T2D reflect an insensitivity of α-cells to paracrine inhibition.


Sign in / Sign up

Export Citation Format

Share Document