Intercostal and Abdominal Respiratory Motoneurons in the Neonatal Rat Spinal Cord: Spatiotemporal Organization and Responses to Limb Afferent Stimulation

2008 ◽  
Vol 99 (5) ◽  
pp. 2626-2640 ◽  
Author(s):  
Aurore Giraudin ◽  
Marie-Jeanne Cabirol-Pol ◽  
John Simmers ◽  
Didier Morin

Respiration requires the coordinated rhythmic contractions of diverse muscles to produce ventilatory movements adapted to organismal requirements. During fast locomotion, locomotory and respiratory movements are coordinated to reduce mechanical conflict between these functions. Using semi-isolated and isolated in vitro brain stem-spinal cord preparations from neonatal rats, we have characterized for the first time the respiratory patterns of all spinal intercostal and abdominal motoneurons and explored their functional relationship with limb sensory inputs. Neuroanatomical and electrophysiological procedures were initially used to locate intercostal and abdominal motoneurons in the cord. Intercostal motoneuron somata are distributed rostrocaudally from C7–T13 segments. Abdominal motoneuron somata lie between T8 and L2. In accordance with their soma distributions, inspiratory intercostal motoneurons are recruited in a rostrocaudal sequence during each respiratory cycle. Abdominal motoneurons express expiratory-related discharge that alternates with inspiration. Lesioning experiments confirmed the pontine origin of this expiratory activity, which was abolished by a brain stem transection at the rostral boundary of the VII nucleus, a critical area for respiratory rhythmogenesis. Entrainment of fictive respiratory rhythmicity in intercostal and abdominal motoneurons was elicited by periodic low-threshold dorsal root stimulation at lumbar (L2) or cervical (C7) levels. These effects are mediated by direct ascending fibers to the respiratory centers and a combination of long-projection and polysynaptic descending pathways. Therefore the isolated brain stem-spinal cord in vitro generates a complex pattern of respiratory activity in which alternating inspiratory and expiratory discharge occurs in functionally identified spinal motoneuron pools that are in turn targeted by both forelimb and hindlimb somatic afferents to promote locomotor-respiratory coupling.

1996 ◽  
Vol 271 (5) ◽  
pp. R1160-R1164 ◽  
Author(s):  
J. J. Greer ◽  
Z. al-Zubaidy ◽  
J. E. Carter

In the present study, we test whether thyrotropin-releasing hormone (TRH) stimulates respiratory frequency in perinatal rats by acting at regions of the medulla responsible for respiratory rhythmogenesis, the pre-Botzinger complex. We also test whether TRH stimulates respiration in the fetal rat at a time shortly after the inception of respiratory rhythmogenesis [embryonic days (E) 17-18]. Two in vitro experimental models were utilized: the isolated brain stem-spinal cord preparation from fetal (E17-E18) and neonatal [postnatal days (P) 0-2] rats and the medullary slice preparation isolated from neonatal rats (P1-P2). Bath application of TRH caused a dose-dependent, reversible increase (maximum increase approximately 60%) in the frequency of respiratory rhythmic neural discharge generated by brain stem-spinal cord [half-maximal effective concentration (EC50) approximately 9 nM] and medullary slice (EC50 approximately 2.5 nM) neonatal rat preparations. Pressure injection of TRH unilaterally into the region of the pre-Botzinger complex of the neonatal medullary slice caused an approximately 28% increase in the frequency of respiratory discharge. Application of TRH to the medium bathing fetal rat brain stem-spinal cord preparations caused an approximately threefold increase in respiratory discharge frequency. We conclude that TRH stimulates respiratory discharge frequency from the time near inception of respiratory motor discharge and acts directly at the pre-Botzinger complex.


2011 ◽  
Vol 105 (6) ◽  
pp. 2818-2829 ◽  
Author(s):  
Eugene Zaporozhets ◽  
Kristine C. Cowley ◽  
Brian J. Schmidt

Previous studies of the in vitro neonatal rat brain stem-spinal cord showed that propriospinal relays contribute to descending transmission of a supraspinal command signal that is capable of activating locomotion. Using the same preparation, the present series examines whether enhanced excitation of thoracic propriospinal neurons facilitates propagation of the locomotor command signal in the lesioned spinal cord. First, we identified neurotransmitters contributing to normal endogenous propriospinal transmission of the locomotor command signal by testing the effect of receptor antagonists applied to cervicothoracic segments during brain stem-induced locomotor-like activity. Spinal cords were either intact or contained staggered bilateral hemisections located at right T1/T2 and left T10/T11 junctions designed to abolish direct long-projecting bulbospinal axons. Serotonergic, noradrenergic, dopaminergic, and glutamatergic, but not cholinergic, receptor antagonists blocked locomotor-like activity. Approximately 73% of preparations with staggered bilateral hemisections failed to generate locomotor-like activity in response to electrical stimulation of the brain stem alone; such preparations were used to test the effect of neuroactive substances applied to thoracic segments (bath barriers placed at T3 and T9) during brain stem stimulation. The percentage of preparations developing locomotor-like activity was as follows: 5-HT (43%), 5-HT/ N-methyl-d-aspartate (NMDA; 33%), quipazine (42%), 8-hydroxy-2-(di- n-propylamino)tetralin (20%), methoxamine (45%), and elevated bath K+ concentration (29%). Combined norepinephrine and dopamine increased the success rate (67%) compared with the use of either agent alone (4 and 7%, respectively). NMDA, Mg2+ ion removal, clonidine, and acetylcholine were ineffective. The results provide proof of principle that artificial excitation of thoracic propriospinal neurons can improve supraspinal control over hindlimb locomotor networks in the lesioned spinal cord.


1999 ◽  
Vol 87 (3) ◽  
pp. 1066-1074 ◽  
Author(s):  
Chun-Kuei Su

To understand the origination of sympathetic nerve discharge (SND), I developed an in vitro brain stem-spinal cord preparation from neonatal rats. Ascorbic acid (3 mM) was added into the bath solution to increase the viability of preparations. At 24°C, rhythmic SND (recorded from the splanchnic nerve) was consistently observed, but it became quiescent at <16°C. Respiratory-related SND (rSND) was discernible and was well correlated with C4 root activity. Power spectral analysis of SND revealed a dominant 2-Hz oscillation. In most preparations (86%), such oscillation was persistent, whereas it only slightly reduced its magnitude after isolation from the brain stem. The removal of neural structures rostral to the superior cerebellar artery (equivalent to the level of facial nuclei) reduced rSND, increased tonic SND, but did not affect the temporal coupling between SND and C4 root activity. Our data suggest a prominent contribution of SND from the neural mechanisms confined within the neonatal rat spinal cord. This ascorbic acid-enhanced in vitro preparation is a very useful model to study neural mechanisms underlying sympathorespiratory integration.


1994 ◽  
Vol 266 (3) ◽  
pp. R658-R667 ◽  
Author(s):  
K. Sugaya ◽  
W. C. De Groat

An in vitro neonatal (1-7 day) rat brain stem-spinal cord-bladder (BSB) preparation was used to examine the central control of micturition. Isovolumetric bladder contractions occurred spontaneously or were induced by electrical stimulation of the ventrolateral brain stem, spinal cord, bladder wall (ES-BW), or by perineal tactile stimulation (PS). Transection of the spinal cord at the L1 segment increased the amplitude of ES-BW- and PS-evoked contractions, and subsequent removal of the spinal cord further increased spontaneous and ES-BW-evoked contractions but abolished PS-evoked contractions. Hexamethonium (1 mM), a ganglionic blocking agent, mimicked the effect of cord extirpation. Tetrodotoxin (1 microM) blocked ES-BW- and PS-evoked contractions but enhanced spontaneous contractions. Bicuculline methiodide (10-50 microM), a gamma-aminobutyric acid A receptor antagonist, increased the amplitude of spontaneous, ES-BW- and PS-evoked contractions. These results indicate that PS-evoked contractions are mediated by spinal reflex pathways, whereas spontaneous and ES-BW-evoked contractions that are elicited by peripheral mechanisms are subject to a tonic inhibition dependent on an efferent outflow from the spinal cord. PS-evoked micturition is also subject to inhibitory modulation arising from sites rostral to the lumbosacral spinal cord. Although electrical stimulation of bulbospinal excitatory pathways can initiate bladder contractions in the neonatal rat, these pathways do not appear to have an important role in controlling micturition during the first postnatal week.


1997 ◽  
Vol 77 (1) ◽  
pp. 229-235 ◽  
Author(s):  
Susan A. Deuchars ◽  
K. Michael Spyer ◽  
Michael P. Gilbey

Deuchars, Susan A., K. Michael Spyer, and Michael P. Gilbey. Stimulation within the rostral ventrolateral medulla can evoke monosynaptic GABAergic IPSPs in sympathetic preganglionic neurons in vitro. J. Neurophysiol. 77: 229–235, 1997. The inhibitory responses of identified sympathetic preganglionic neurons (SPNs) to stimulation within the rostral ventrolateral medulla (RVLM) were studied to determine their nature and pharmacology. Whole cell patch-clamp recordings were made from 36 SPNs in the upper thoracic segments of the spinal cord in a neonatal rat brain stem-spinal cord preparation. Neurons were identified as SPNs on the basis of their antidromic activation after stimulation of the ipsilateral segmental ventral root and their morphology and location in the intermediolateral cell column and intercalated nucleus. In all SPNs, electrical stimulation of the RVLM evoked fast excitatory postsynaptic potentials (EPSPs) that were mediated by non- N-methyl-d-aspartate (NMDA) and NMDA receptors. These excitatory responses were the most prominent response in control artificial cerebrospinal fluid and have been studied previously. In 22 of the SPNs, RVLM stimulation also elicited fast inhibitory postsynaptic potentials (IPSPs), which increased in amplitude as the membrane was depolarized. Five of these neurons were not studied further as they responded occasionally with IPSPs that had highly variable onset latencies indicating the involvement of a polysynaptic pathway. In the remaining SPNs ( n = 17), the evoked IPSPs persisted in the presence of the excitatory amino acid antagonists 6-cyano-7-nitroquinoxaline-2,3,-dione and d,l-2-amino-5-phosphonopentanoic acid. In eight of these SPNs, it was necessary to block the EPSPs to reveal the IPSPs. In the 7 SPNs tested, the onset latencies of the IPSPs were not significantly different from the onset latencies of the fast EPSPs. The low sweep-to-sweep fluctuations in onset latency of individual IPSPs (absolute average deviation: 0.4 ms) indicated that the IPSPs were elicited by activation of a monosynaptic pathway. The amplitudes of the IPSPs decreased in amplitude as the membrane was hyperpolarized and reversed in polarity at −70.3 ± 1.7 mV (mean ± SD), which was close to the equilibrium potential for chloride ions. In addition, in seven SPNs, bath applications of 5 μM bicuculline, a γ-aminobuturic acid-A (GABAA) antagonist, abolished or reduced the evoked IPSPs. Five SPNs also were studied that displayed ongoing IPSPs. The amplitudes of these IPSPs increased with membrane depolarization and were blocked by bath applications of 5 μM bicuculline, suggesting that they also were mediated by activation of GABAA receptors. These results demonstrate the existence of a bulbospinal GABAergic pathway impinging directly onto SPNs. This pathway may be tonically active in the neonatal rat brain stem-spinal cord preparation.


2009 ◽  
Vol 101 (3) ◽  
pp. 1171-1178 ◽  
Author(s):  
Kristine C. Cowley ◽  
Eugene Zaporozhets ◽  
Raed A. Joundi ◽  
Brian J. Schmidt

Commissural projections are required for left-right coordination during locomotion. However, their role, if any, in rhythm production is unknown. This study uses the neonatal rat in vitro brain stem–spinal cord model to examine the rostrocaudal distribution of locomotor-related commissural projections and study whether commissural connections are needed for the generation of hindlimb rhythmic activity in response to electrical stimulation of the brain stem. Midsagittal lesions were made at a wide range of rostrocaudal levels. Locomotor-like activity persisted in some preparations despite midsagittal lesions extending from C1 to the mid-L1 level or from the conus medullaris to the T12/13 junction. In some preparations, midsagittal lesions throughout the entire spinal cord had no effect on locomotor-like activity if two or three contiguous segments remained intact. Those bridging segments had to include the T13 and/or L1 levels. These observations suggested that commissural projections in the thoracolumbar junction region were critical. However, locomotor-like activity was also elicited in preparations with limited midsagittal lesions focused on the thoracolumbar junction (T12 through L1 or L2 inclusive). In other experiments, locomotor-like activity was evoked by bath-applied 5-hydroxytryptamine (5-HT) and N-methyl-d-aspartate (NMDA). Appropriate side-to-side coordination was observed, even when only one segment remained bilaterally intact. Commissural projections traversing the thoracolumbar junction region were most effective. In combination, these results suggest that locomotor-related commissural projections are redundantly distributed along a bi-directional gradient that centers on the thoracolumbar junction. This commissural system not only provides a robust left-right coordinating mechanism but also supports locomotor rhythm generation in response to brain stem stimulation.


1990 ◽  
Vol 64 (4) ◽  
pp. 1149-1169 ◽  
Author(s):  
J. C. Smith ◽  
J. J. Greer ◽  
G. S. Liu ◽  
J. L. Feldman

1. An analysis of the spatial and temporal patterns of activity of neurons of the respiratory motor-pattern generation system in an in vitro neonatal rat brain stem-spinal cord preparation is presented. Impulse discharge patterns of spinal and cranial moto-neurons as well as respiratory neurons in the medulla were analyzed. Patterns of motoneuronal discharge were characterized at the population level from recordings of motor-nerve discharge and at the single-cell level from intracellular recordings. These patterns were compared to patterns generated in the neonatal rat and adult mammal in vivo to establish the correspondence between in vitro and in vivo states. 2. The in vitro system generated a complex spatiotemporal pattern of spinal and cranial motoneuron activity during inspiratory (I) and expiratory (E) phases of the respiratory cycle. The respiratory cycle consisted of three distinct phases of neuronal activity (I, early E, and late E phase) similar to the temporal organization of the cycle in the intact mammal. The spike discharge pattern of motoneurons during the I phase consisted of a rapidly peaking-slowly decrementing discharge envelope with a high degree of synchronization on a time scale of 25-50 ms (approximately 20-40 Hz). A similar pattern was generated in the neonate in vivo under conditions comparable with the in vitro state (i.e., nervous system isolated from mechanosensory afferent inputs). However, the I-phase-motoneuron discharge pattern and cycle-phase durations differed from those characteristic of the intact neonatal or adult systems in vivo. This difference could be accounted for primarily by removal of vagal mechanosensory afferent inputs. 3. The synaptic drive potentials of spinal motoneurons during the I phase in vitro consisted of a rapidly peaking-slowly decrementing potential envelope similar in shape to the spike-frequency histogram of single motoneurons and the envelope of the motoneuron-population discharge. The drive potentials had prominent high-frequency amplitude fluctuations superimposed on the slower drive-potential envelope that were temporally correlated with the generation of motoneuron action potentials. The dominant frequency components of these fast-membrane-potential oscillations (20-35 Hz) were similar to the frequency components of the amplitude fluctuations in the motoneuron-population discharge. One class of medullary neurons with I-phase discharge also exhibited a rapidly peaking-slowly decrementing pattern of impulse discharge and synaptic drive potential with similar high-frequency components.(ABSTRACT TRUNCATED AT 400 WORDS)


1990 ◽  
Vol 64 (3) ◽  
pp. 727-735 ◽  
Author(s):  
Y. Atsuta ◽  
E. Garcia-Rill ◽  
R. D. Skinner

1. Electrical stimulation of two brain stem regions in the decerebrate neonatal rat brain--the mesencephalic locomotor region (MLR) and the medioventral medulla (MED)--were found to elicit rhythmic limb movements in the hind-limb-attached, in vitro, brain stem-spinal cord preparation. 2. Electromyographic (EMG) analysis revealed locomotion similar to that observed during stepping in the adult rat. The step-cycle frequency could be increased by application of higher-amplitude currents; but, unlike the adult, alternation could not be driven to a gallop. 3. Threshold currents for inducing locomotion were significantly lower for stimulation of the MED compared with the MLR. Brain stem transections carried out at midpontine levels demonstrated that the presence of the MLR was not required for the expression of MED-stimulation-induced effects. 4. Substitution of the standard artificial cerebrospinal fluid (aCSF) by magnesium-free aCSF did not affect interlimb relationships and resulted in a significant decrease of the threshold currents for inducing locomotion. 5. Fixation of the limbs during electrical stimulation of brain stem sites altered the amplitude and duration of the EMG patterns, but the basic rhythm and timing of each muscle contraction during the step cycle was not affected. 6. These studies suggest that, although peripheral afferent modulation is evident in the neonatal locomotor control system, descending projections from brain stem-locomotor regions appear capable of modulating the activity of spinal pattern generators as early as the day of birth. However, there may be ceiling to the maximal frequency of stepping possible at this early age, perhaps suggesting a later-developing mechanism for galloping.


2004 ◽  
Vol 190 (5) ◽  
pp. 343-357 ◽  
Author(s):  
F. Clarac ◽  
E. Pearlstein ◽  
J. F. Pflieger ◽  
L. Vinay

Sign in / Sign up

Export Citation Format

Share Document