Effects of chronic spinalization on ankle extensor motoneurons. I. Composite monosynaptic Ia EPSPs in four motoneuron pools

1994 ◽  
Vol 71 (4) ◽  
pp. 1452-1467 ◽  
Author(s):  
S. Hochman ◽  
D. A. McCrea

1. We examined the effects of 6-wk chronic spinalization at the L1-L2 level on composite monosynaptic Ia excitatory postsynaptic potentials (EPSPs) recorded in medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus (SOL), and plantaris (PL) motoneurons. Amplitudes, rise times, and half-widths of composite monosynaptic Ia EPSPs evoked by low-strength electrical stimulation of peripheral nerves were measured in barbiturate-anesthetized cats and compared between unlesioned and chronic spinal preparations. 2. The mean amplitude of homonymous composite Ia EPSPs evoked by 1.2 times threshold (1.2T) stimulation and recorded in all four ankle extensor motoneuron pools increased 26% in chronic spinal animals compared with unlesioned controls. There was also an increased incidence of large-amplitude, short-rise time EPSPs. When the same data were separated according to individual motoneuron species, homonymous EPSP amplitudes in MG motoneurons were found to be unchanged. EPSPs recorded in LG motoneurons and evoked by stimulation of the combined LG and SOL nerve were increased by 46%. Mean EPSP amplitudes recorded in both SOL and PL motoneurons were larger after spinalization but statistical significance was only achieved when values from SOL and PL were combined to produce a larger sample size. 3. In LG motoneurons from chronic spinal animals, all EPSPs evoked by 1.2T stimulation of the LGS nerve were > or = 0.5 mV in amplitude. In unlesioned preparations, one fourth of the LG cells had EPSPs that were < or = 0.2 mV. 4. The mean amplitude of heteronymous EPSPs evoked by 2T stimulation of LGS and MG nerves and recorded in MG and LG motoneurons, respectively, doubled in size after chronic spinalization. Because homonymous EPSP amplitudes were unchanged in MG motoneurons, synaptic mechanisms and not passive membrane properties are likely responsible for increased heteronymous EPSP amplitudes in MG. 5. The mean 10-90% rise time of homonymous composite Ia EPSPs in pooled data from all motoneurons decreased 21% in 6-wk chronic spinal animals. Unlike EPSP amplitude, significant rise time decreases were found in all four motoneuron pools. Compared with the other motoneuron species, the mean homonymous rise time recorded in MG motoneurons was shortest and decreased the least in chronic spinal animals. Rise times of heteronymous Ia EPSPs in MG and LG motoneurons also decreased. The maximum rate of rise of homonymous EPSPs increased in all four motoneuron species. 6. The mean half-widths of Ia composite EPSPs decreased in 6-wk spinalized preparations in all motoneuron species.(ABSTRACT TRUNCATED AT 400 WORDS)

1989 ◽  
Vol 62 (2) ◽  
pp. 325-333 ◽  
Author(s):  
S. Vanden Noven ◽  
M. J. Pinter

1. Composite excitatory postsynaptic potentials (EPSPs) evoked by electrical stimulation of heteronymous group Ia afferents have been studied at various postoperative times in axotomized motoneurons that were denied the opportunity to reinnervate muscle. 2. The medial gastrocnemius (MG) nerve was transected and sutured onto the surface of the normally innervated lateral gastrocnemius (LG) muscle. The denervated MG muscle was excised thereby eliminating access of regenerating MG motor axons to vacant end-plates. 3. The mean amplitude of monosynaptic Ia EPSPs evoked by electrical stimulation of the LG-soleus (LGS) nerve and recorded in axotomized MG motoneurons showed an initial decline at 20 days postoperative (DPO) that was not significant. At 44 DPO, mean amplitude had declined significantly to 43% of the control mean amplitude. At 90 DPO, mean EPSP amplitude was not significantly different from control. At the latest postoperative time (150-180 DPO), mean amplitude was significantly less than the control amplitude. 4. Mean EPSP rise time (time-to-peak) was significantly increased (27%) at the earliest postoperative times (20-44 DPO). At later postoperative times (90-180), mean EPSP rise time was not significantly different from mean control rise time. 5. "Partial responses" superimposed on EPSPs were not observed at any postoperative time. 6. Mean posttetanic potentiation (PTP) of the LGS EPSP was significantly depressed at 20 DPO. At later postoperative times, PTP did not differ significantly from mean control PTP. 7. The possibility is considered that postaxotomy alterations in the electrical properties of motoneurons may explain these complex variations of mean EPSP amplitude and rise time.


1997 ◽  
Vol 77 (4) ◽  
pp. 1939-1949 ◽  
Author(s):  
Mohamed Ouardouz ◽  
Jean-Claude Lacaille

Ouardouz, Mohamed and Jean-Claude Lacaille. Properties of unitary IPSCs in hippocampal pyramidal cells originating from different types of interneurons in young rats. J. Neurophysiol. 77: 1939–1949, 1997. Whole cell recordings were used in hippocampal slices of young rats to examine unitary inhibitory postsynaptic currents (uIPSCs) evoked in CA1 pyramidal cells at room temperature. Loose cell-attached stimulation was applied to activate single interneurons of different subtypes located in stratum oriens (OR), near stratum pyramidale (PYR), and at the border of stratum radiatum and lacunosum-moleculare (LM). uIPSCs evoked by stimulation of PYR and OR interneurons had similar onset latency, rise time, peak amplitude, and decay. In contrast, uIPSCs elicited by activation of LM interneurons were significantly smaller in amplitude and had a slower time course. The mean reversal potential of uIPSCs was −53.1 ± 2.1 (SE) mV during recordings with intracellular solution containing potassium gluconate. With the use of recording solution containing the potassium channel blocker cesium, the reversal potential of uIPSCs was not significantly different (−58.5 ± 2.6 mV), suggesting that these synaptic currents were not mediated by potassium conductances. Bath application of the γ-aminobutyric acid-A (GABAA) receptor antagonist bicuculline (25 μM) reversibly blocked uIPSCs evoked by stimulation of all interneuron subtypes. In bicuculline, the mean peak amplitude of uIPSCs recorded with potassium gluconate was reduced to 3.5 ± 4.4% of control ( n = 7). Similarly, with cesium methanesulfonate, the mean amplitude in bicuculline was 2.9 ± 3.1% of control ( n = 13). Application of the GABAB receptor antagonist CGP 55845A (5 μM) resulted in a significant and reversible increase in the mean amplitude of uIPSCs recorded with cesium-containing intracellular solution. Thus uIPSCs from all cell types appeared under tonic presynaptic inhibition by GABAB receptors. Paired stimulation of individual interneurons at 100- to 200-ms intervals did not result in paired pulse depression of uIPSCs. For individual responses, a significant negative correlation was observed between the amplitude of the first and second uIPSCs. A significant paired pulse facilitation (154.0 ± 8.0%) was observed when the first uIPSC was smaller than the mean of all first uIPSCs. A small, but not significant, paired pulse depression (90.8 ± 4.0%) was found when the first uIPSC was larger than the mean of all first uIPSCs. Our results indicate that these different subtypes of hippocampal interneurons generate Cl−-mediated GABAA uIPSCs. uIPSCs originating from different types of interneurons may have heterogeneous properties and may be subject to tonic presynaptic inhibition via heterosynaptic GABAB receptors. These results suggest a specialization of function for inhibitory interneurons and point to complex presynaptic modulation of interneuron function.


1993 ◽  
Vol 70 (4) ◽  
pp. 1585-1592 ◽  
Author(s):  
J. S. Carp

1. Homonymous and heteronymous monosynaptic composite excitatory postsynaptic potentials (EPSPs) were evaluated by intracellular recordings from 89 motoneurons innervating triceps surae (n = 59) and more distal (n = 30) muscles in 14 pentobarbital-anesthetized monkeys (Macaca nemestrina). 2. Homonymous EPSPs were found in all motoneurons tested. The mean values +/- SD for maximum EPSP amplitude of triceps surae motoneurons were 2.5 +/- 1.3, 1.8 +/- 1.3 and 4.5 +/- 2.0 mV for medial gastrocnemius, lateral gastrocnemius, and soleus motoneurons, respectively. Heteronymous EPSPs were almost always smaller than their corresponding homonymous EPSPs. 3. Triceps surae EPSP amplitude was larger in motoneurons with higher input resistance. However, this relationship was weak, suggesting that factors related to input resistance play a limited role in determining the magnitude of the EPSP. 4. The mean ratio +/- SD of the amplitude of the EPSP elicited by combined stimulation of all triceps surae nerves to the amplitude of the algebraic sum of the three individual EPSPs was 0.95 +/- 0.05. This ratio was greater in motoneurons with lower rheobase. 5. Some patterns of synaptic connectivity in the macaque are consistent with previously reported differences between primates and cat (e.g., heteronymous EPSPs elicited by medial gastrocnemius nerve stimulation in soleus motoneurons are small in macaque and other primates but large in cat). However, no overall pattern emerges from a comparison of the similarities and differences in EPSPs among species in which they have been studied (i.e., macaque, baboon, and cat). That is, there are no two species in which EPSP properties are consistently similar to each other, but different from those of the third species.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 54 (6) ◽  
pp. 1541-1552 ◽  
Author(s):  
B. M. Davis ◽  
W. F. Collins ◽  
L. M. Mendell

Single medial gastrocnemius Ia-afferent fibers and motoneurons to which they projected were simultaneously impaled in anesthetized cats. Each Ia-afferent fiber was electrically stimulated once every 2 s with short high-frequency bursts (32 shocks at 167 Hz) followed by 1-11 test shocks. The resulting motoneuron excitatory postsynaptic potentials (EPSPs) were recorded and averaged in register. The interval between the end of one burst and the beginning of the next was 2 s; therefore, the amplitude of the first EPSP in the burst was considered to be a measure of efficacy of transmission 2 s after the burst. At most connections (23/29) the mean amplitude of the first EPSP in the burst was equal to or larger than the mean amplitude of control EPSPs produced by low-frequency (18-Hz) stimulation. Enhancement of transmission was maximum 50-100 ms after the burst, and the amplitude of the test EPSP delivered at this time was always greater than that of the control. The period of enhanced transmission appeared to decay more rapidly at connections with small EPSPs. The greatest amount of EPSP amplitude enhancement at 50 or 100 ms after the burst was observed at connections at which EPSP amplitude increased during the burst. The shape (rise time, half width) of potentiated EPSPs was the same as control EPSPs averaged during low-frequency (18-Hz) stimulation. Multiple shocks delivered at low frequency between bursts revealed that enhanced transmission following the high-frequency burst is very sensitive to the effects of low-frequency test stimulation. Furthermore, increasing the number of shocks during the interval between bursts reduced the enhancement of the first EPSP in the burst. We suggest that modulation of synaptic transmission after high-frequency bursts differs across Ia-motoneuron connections. These time-dependent changes associated with short bursts of firing (which are similar in frequency to those observed in Ia-fibers supplying hind-limb muscles during stepping) emphasize the necessity to consider the history of the discharge pattern of the group Ia fiber in assessing efficacy at individual Ia-motoneuron connections.


1996 ◽  
Vol 76 (4) ◽  
pp. 2804-2807 ◽  
Author(s):  
J. A. Gottfried ◽  
M. Chesler

1. The rise time of activity-dependent extracellular pH shifts was measured in the CA1 stratum radiatum of rat hippocampal slices by recording pH-sensitive fluorescence of a fluorescein-conjugated dextran. Optical data were compared with simultaneous pH microelectrode recordings. 2. The pH shifts generated by CO2 or by stimulation of the Schaffer collaterals were paralleled by shifts in fluorescence emissions at 535 nm when the probe was excited with 490-nm light (delta F490). Emissions at 535 nm induced by 440-nm light were unchanged in these paradigms. 3. A train of three stimuli at 100 Hz was repeated at 30-s intervals and the stimulus-triggered delta F490 was averaged. The mean rise time of the delta F490 was 69 +/- 24 (SE) ms (range 20-200 ms, n = 6). The mean increase in emission was 0.75 +/- 0.22% of baseline, associated with a pH microelectrode response of +0.06 +/- 0.02 unit pH. 4. These data demonstrate that synaptically evoked alkaline transients develop within tens of milliseconds. The occurrence of the alkalinization in the same time frame as excitatory postsynaptic currents indicates that these pH shifts arise with sufficient speed to modulate synaptic transmission.


1978 ◽  
Vol 89 (3) ◽  
pp. 659-672 ◽  
Author(s):  
Jørgen Weeke ◽  
Hans Jørgen G. Gundersen

ABSTRACT Ten normal young males were investigated in order to examine diurnal and short-term variations in serum TSH and serum thyroid hormones. In five subjects blood samples were obtained every 30 min during a 24 h period of daily life. A synchronous diurnal rhythm was found for free T3 and serum TSH with low levels in the day-time and higher levels at night. The mean increase from day to night was 15 and 140 per cent, respectively. There was a tendency to a similar rhythm in free T4, but the increase of 7 per cent fell short of statistical significance. In the other five men blood samples were obtained every 5 min in a 6 to 7 h period starting within the interval from 19.15 to 22.00 h. A significant regular variation with a cycle-length of half an hour was found in TSH, free T3 and free T4. This rhythm accounted for a significant part of the total variation in the levels of TSH, free T3 and free T4. The mean amplitude of the short-term variation is 13, 15 and 11 per cent of the mean level of the respective hormones. The data suggest a pulsatile release of hormones from the thyroid gland governed by a pulsatile TSH secretion.


1976 ◽  
Vol 39 (6) ◽  
pp. 1393-1402 ◽  
Author(s):  
E. K. Stauffer ◽  
D. G. Watt ◽  
A. Taylor ◽  
R. M. Reinking ◽  
D. G. Stuart

1. The spike-triggered averaging (STA) method has been used to study synaptic connections of nine spindle group II afferents from medial gastrocnemius to 151 motoneurons of leg muscles in the cat. 2. EPSPs were found in 40 cells, predominantly of triceps surae with latency from cord entry ranging from 0.3 to 4.2 ms. Those with latency less than or equal to 1.4 ms were deduced to be monosynaptic in confirmation of Kirkwood and Sears (13). Mean amplitude for MG-LGS cells was 30.1 muV and mean rise time 1.0 ms (compared with 65.4 muV and 1.0 ms for monosynaptic Ia EPSPs from the preceding report (26)). It is argued that monosynaptic latency for spindle group II afferents could be as large as 1.65 ms. 3. The occurrence of a presynaptic spike permitted the division of EPSP latencies into central conduction time and synaptic delay components. Sindle group II central conduction times were significantly longer than those of Ia afferents, while there were no differences in the synaptic delays associated with the two afferent types. 4. EPSPs of longer latency were judged to be di- or trisynaptic. They were smaller and had longer rise times than the monosynaptic effects. Evidence is presented to show that short rise time of an individual PSP does not guarantee that it is monosynaptic. Rise times are different only on a population basis. 5. Inhibitory responses were found with latencies and mean rise times appropriate for di- and trisynaptic connections. Their mean amplitude was 4.6 muV. 6. The distribution of EPSPs and IPSPs was generally consistent with their exerting stretch reflex effects similar to that of Ia afferents and inconsistent with the inclusion of them in the grouping known as “flexor reflex afferents.”


1960 ◽  
Vol XXXIII (II) ◽  
pp. 230-250 ◽  
Author(s):  
Eileen E. Hill

ABSTRACT A method for the fractionation of the urinary 17-ketogenic steroids with no oxygen grouping at C11 and those oxygenated at C11, is applied to the clinical problems of congenital adrenal hyperplasia. In normal children the mean ratio of the non-oxygenated to oxygenated steroids is 0.24. In childrern with congenital adrenal hyperplasia the ratio is 2.3. The reason for this difference in ratio is discussed. The changes in ratio found under stimulation of the adrenal gland with exogenous or endogenous corticotrophin and the suppression with cortisone therapy are studied. This test can be applied to isolated samples of urine, a major advantage in paediatric practice, and can be carried out in routine laboratories. It is found to be reliable in the diagnosis and sensitive in the control of congenital adrenal hyperplasia.


2020 ◽  
Vol 133 (3) ◽  
pp. 830-838 ◽  
Author(s):  
Andrea Franzini ◽  
Giuseppe Messina ◽  
Vincenzo Levi ◽  
Antonio D’Ammando ◽  
Roberto Cordella ◽  
...  

OBJECTIVECentral poststroke neuropathic pain is a debilitating syndrome that is often resistant to medical therapies. Surgical measures include motor cortex stimulation and deep brain stimulation (DBS), which have been used to relieve pain. The aim of this study was to retrospectively assess the safety and long-term efficacy of DBS of the posterior limb of the internal capsule for relieving central poststroke neuropathic pain and associated spasticity affecting the lower limb.METHODSClinical and surgical data were retrospectively collected and analyzed in all patients who had undergone DBS of the posterior limb of the internal capsule to address central poststroke neuropathic pain refractory to conservative measures. In addition, long-term pain intensity and level of satisfaction gained from stimulation were assessed. Pain was evaluated using the visual analog scale (VAS). Information on gait improvement was obtained from medical records, neurological examination, and interview.RESULTSFour patients have undergone the procedure since 2001. No mortality or morbidity related to the surgery was recorded. In three patients, stimulation of the posterior limb of the internal capsule resulted in long-term pain relief; in a fourth patient, the procedure failed to produce any long-lasting positive effect. Two patients obtained a reduction in spasticity and improved motor capability. Before surgery, the mean VAS score was 9 (range 8–10). In the immediate postoperative period and within 1 week after the DBS system had been turned on, the mean VAS score was significantly lower at a mean of 3 (range 0–6). After a mean follow-up of 5.88 years, the mean VAS score was still reduced at 5.5 (range 3–8). The mean percentage of long-term pain reduction was 38.13%.CONCLUSIONSThis series suggests that stimulation of the posterior limb of the internal capsule is safe and effective in treating patients with chronic neuropathic pain affecting the lower limb. The procedure may be a more targeted treatment method than motor cortex stimulation or other neuromodulation techniques in the subset of patients whose pain and spasticity are referred to the lower limbs.


2019 ◽  
Vol 44 (5) ◽  
pp. 452-458 ◽  
Author(s):  
R Arif ◽  
JB Dennison ◽  
D Garcia ◽  
P Yaman

SUMMARY Statement of Problem: The long-term effect of the presence of porcelain laminate veneers (PLVs) on the health of the surrounding gingival issues is not available in the restorative literature. Purpose: To assess the long-term effect of PLVs on the health of the surrounding gingival tissues. A secondary aim was to correlate gingival crevicular fluid (GCF) scores with clinical parameters used for gingival health assessment in teeth treated with PLVs. Methods and Materials: Patients who received PLVs placed at the Graduate Restorative Clinic within a seven- to 14-year period were recalled for clinical evaluations. Periodontal measurements including gingival index (GI), periodontal pocket depth (PPD), gingival recession (GR), and clinical attachment level (CAL) were measured using a standard probe and indices. Gingival Crevicular Fluid (GCF) was measured with a Periotron machine (Periotron 8000, Oraflow Inc), using Periopaper (Periopaper Gingival Fluid Collection Strip, Oraflow Inc.) for fluid collection. Photographs of any observed clinical defect were taken. Data were tabulated using Excel 2010 (Microsoft Corp). Statistical analysis for all descriptive statistics was performed using SPSS 21 (SPSS Software, IBM Corp.) and Stata SE 13 (Stata Software, StataCorp). Repeated-measures analysis of variance (ANOVA) was done to test for statistical significance of the mean pocket depths between the restored and unrestored surfaces of the veneered teeth. The significance level for all tests was p&lt;0.05. Pearson's correlation coefficient was performed for testing statistical significance between GCF and GI and between GCF and PPD. Results: The frequency distribution of the GI included 47 PLVs (43%) with normal gingiva, 16 (15%) with mild inflammation, and 46 (42%) with moderate inflammation and bleeding on probing. The average PPD on the facial surface of the maxillary and mandibular PLVs was 2.17 mm and 2.16 mm, respectively. On the lingual surface, the average PPD was 2.10 mm for maxillary and 2.22 mm for mandibular PLVs. Gingival recession was seen in 27% of the evaluated PLVs. The repeated-measures ANOVA revealed p≥0.136, showing no statistical difference in the mean pocket depths between restored facial and unrestored lingual surfaces of the veneered teeth. A moderate correlation (r=0.407) was found between GCF and GI, which was significant at p&lt;0.001. No correlation (r=0.124) was found between GCF and PPD, which was not significant at p=0.197. Conclusions: Gingival response to the evaluated PLVs was in the satisfactory range, with overall GI scores ranging between normal and moderate inflammation, pocket depths ranging from 1 to 2 mm, and recession present in 27% of the evaluated PLVs. No statistically significant difference was found between the mean pocket depths of the restored and unrestored surfaces of veneered teeth (p≥0.136). A moderate correlation was found between GCF and GI.


Sign in / Sign up

Export Citation Format

Share Document