Na(+)-activated nonselective cation channels in primary olfactory neurons

1995 ◽  
Vol 73 (5) ◽  
pp. 1774-1781 ◽  
Author(s):  
A. B. Zhainazarov ◽  
B. W. Ache

1. Excised inside-out patch recordings were used to describe a novel cation channel from cultured lobster olfactory receptor neurons that is activated by [Na+]i. 2. The channel is reversibly activated by intracellular Na+ as low as 5 mM. The half-effect concentration of intracellular Na+ is approximately 60 mM at -60 mV. The dependence of the channel open probability on [Na+]i is sigmoidal with a Hill coefficient of 3.1, indicating that more than one Na+ must bind to activate the channel. 3. The channel is equally permeable to Na+, K+, and Li+. In symmetrical 210 mM Na+, the open channel current-voltage relationship shows slight inward rectification at positive potentials. The slope conductance of the channel is 107 pS between -90 and 0 mV. 4. Although the channel is not activated by voltage in the absence of intracellular Na+, the gating of the channel is dependent on voltage as well as [Na+]i and [Na+]o. 5. Both intracellular Ca2+ and Mg2+ reversibly affect channel activity in a concentration-dependent manner starting at 1 microM. Ca2+ decreases both the open probability and the single channel amplitude, whereas Mg2+ decreases the open probability but has no effect on the single channel amplitude. Ba2+ (5 mM), but not 20 mM Cs+ and 100 microM amiloride, reversibly block the channel. 6. We speculate that this novel cation channel regulates neuronal excitability by accentuating the rate and/or the magnitude of depolarization of the cell to odors.

2009 ◽  
Vol 133 (5) ◽  
pp. 525-546 ◽  
Author(s):  
Nathaniel T. Blair ◽  
J. Stefan Kaczmarek ◽  
David E. Clapham

TRPC5 is a calcium (Ca2+)-permeable nonselective cation channel expressed in several brain regions, including the hippocampus, cerebellum, and amygdala. Although TRPC5 is activated by receptors coupled to phospholipase C, the precise signaling pathway and modulatory signals remain poorly defined. We find that during continuous agonist activation, heterologously expressed TRPC5 currents are potentiated in a voltage-dependent manner (∼5-fold at positive potentials and ∼25-fold at negative potentials). The reversal potential, doubly rectifying current–voltage relation, and permeability to large cations such as N-methyl-d-glucamine remain unchanged during this potentiation. The TRPC5 current potentiation depends on extracellular Ca2+: replacement by Ba2+ or Mg2+ abolishes it, whereas the addition of 10 mM Ca2+ accelerates it. The site of action for Ca2+ is intracellular, as simultaneous fura-2 imaging and patch clamp recordings indicate that potentiation is triggered at ∼1 µM [Ca2+]. This potentiation is prevented when intracellular Ca2+ is tightly buffered, but it is promoted when recording with internal solutions containing elevated [Ca2+]. In cell-attached and excised inside-out single-channel recordings, increases in internal [Ca2+] led to an ∼10–20-fold increase in channel open probability, whereas single-channel conductance was unchanged. Ca2+-dependent potentiation should result in TRPC5 channel activation preferentially during periods of repetitive firing or coincident neurotransmitter receptor activation.


1994 ◽  
Vol 267 (3) ◽  
pp. H1010-H1016 ◽  
Author(s):  
A. Boraso ◽  
A. J. Williams

The effect of hydrogen peroxide (H2O2) on the sheep cardiac sarcoplasmic reticulum (SR) Ca(2+)-release channel has been investigated under voltage-clamp conditions after incorporation of native membrane vesicles into planar phospholipid bilayers. In the presence of micromolar activating calcium concentrations on the cytosolic side of the membrane, H2O2 (3-5 mM) increased open probability of the channels. H2O2 did not affect the conductance of the channel or the response to activating compounds, such as ATP and caffeine. H2O2 did not alter the inhibitory response to magnesium or the modification of channels by ryanodine. At subactivating calcium concentrations (approximately 45 pM) on the cytosolic side of the membrane, 5 mM H2O2 was still able to open the channel. Analysis of single-channel open and closed lifetimes suggested that H2O2 had a direct effect on the gating mechanism of the channel. Open probability of the SR Ca(2+)-release channel is reduced by millimolar concentrations of dithiothreitol, a sulfhydryl-protecting compound, in a concentration-dependent manner. In conclusion, it is probable that H2O2 activates the SR Ca(2+)-release channel via an oxidation of cysteine thiol groups in the channel protein.


1990 ◽  
Vol 259 (5) ◽  
pp. H1609-H1612 ◽  
Author(s):  
A. I. Undrovinas ◽  
N. Burnashev ◽  
D. Eroshenko ◽  
I. Fleidervish ◽  
C. F. Starmer ◽  
...  

The ATP-sensitive potassium channel current (IK-ATP) was studied in excised inside-out patches from rat ventricular cells at 20-23 degrees C. The bath solution contained 140 mM KF, and the pipette solution contained 140 mM KCl and 1.2 mM MgCl2. ATP (0.5 mM) in the bath inhibited IK-ATP. In the absence of ATP, 10 microM quinidine decreased open probability 67 +/- 1% (n = 6) at -50 mV and 28 +/- 12% at -130 mV (n = 5) without affecting single channel conductance (48-52 pS). The block increased with 25 and 50 microM quinidine and could be reversed on washing quinidine for several minutes. Interburst (closed) intervals were increased by quinidine, whereas open and closed time distributions within bursts were not changed. We conclude that quinidine blocks IK-ATP in a "slow" and voltage-dependent manner in clinically relevant concentrations. Because of the postulated role for IK-ATP in cardiac ischemia, quinidine block of this channel may play a role in ischemic arrhythmias.


1999 ◽  
Vol 277 (1) ◽  
pp. H199-H210 ◽  
Author(s):  
Johann Kiehn ◽  
Antonio E. Lacerda ◽  
Arthur M. Brown

The rapid, repolarizing K+ current in cardiomyocytes ( I Kr) has unique inwardly rectifying properties that contribute importantly to the downstroke of the cardiac action potential. The human ether-à-go-go-related gene ( HERG) expresses a macroscopic current virtually identical to I Kr, but a description of the single-channel properties that cause rectification is lacking. For this reason we measured single-channel and macropatch currents heterologously expressed by HERG in Xenopus oocytes. Our experiments had two main findings. First, the single-channel current-voltage relation showed inward rectification, and conductance was 9.7 pS at −100 mV and 3.9 pS at 100 mV when measured in symmetrical 100 mM K+ solutions. Second, single channels frequently showed no openings during depolarization but nevertheless revealed bursts of openings during repolarization. This type of gating may explain the inward rectification of HERG currents. To test this hypothesis, we used a three-closed state kinetics model and obtained rate constants from fits to macropatch data. Results from the model are consistent with rapid inactivation from closed states as a significant source of HERG rectification.


2006 ◽  
Vol 290 (4) ◽  
pp. C1009-C1017 ◽  
Author(s):  
Luiz Artur Poletto Chaves ◽  
Endrigo Piva Pontelli ◽  
Wamberto Antonio Varanda

ATP-activated currents were studied in Leydig cells of mice with the patch-clamp technique. Whole cell currents were rapidly activating and slowly desensitizing (55% decrement from the peak value on exposure to 100 μM ATP for 60 s), requiring 3 min of washout to recover 100% of the response. The concentration-response relationships for ATP, adenosine 5′- O-(3-thiotriphosphate) (ATPγS), and 2-methylthio-ATP (2-MeS-ATP) were described by the Hill equation with a concentration evoking 50% of maximal ATP response ( Kd) of 44, 110, and 637 μM, respectively, and a Hill coefficient of 2. The order of efficacy of agonists was ATP ≥ ATPγS > 2-MeS-ATP > 2′,3′- O-(4-benzoylbenzoyl)-ATP (BzATP). αβ-Methylene-ATP (αβ-MeATP), GTP, UTP, cAMP, and adenosine were ineffective. Suramin and pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) blocked the responses in a concentration-dependent manner. The ATP-activated currents were dependent on extracellular pH, being maximal at pH 6.5 and decreasing with both acidification and alkalinization (apparent dissociation constant (p Ka) of 5.9 and 7.4, respectively). The whole cell current-voltage relationship showed inward rectification and reversed near 0 mV. Experiments performed in bi-ionic conditions for measurement of reversal potentials showed that this channel is highly permeable to calcium [permeability ( P)Ca/ PNa = 5.32], but not to chloride ( PCl/ PNa = 0.03) or N-methyl-d-glucamine (NMDG) ( PNMDG/ PNa = 0.09). Unitary currents recorded in outside-out patches had a chord conductance of 27 pS (between −90 and −50 mV) and were inward rectifying. The average current passing through the excised patch decreased with time [time constant (τ) = 13 s], resembling desensitization of the macroscopic current. These findings indicate that the ATP receptor present in Leydig cells shows properties most similar to those of cloned homomeric P2X2.


1999 ◽  
Vol 113 (5) ◽  
pp. 695-720 ◽  
Author(s):  
Shinghua Ding ◽  
Frederick Sachs

The single channel properties of cloned P2X2 purinoceptors expressed in human embryonic kidney (HEK) 293 cells and Xenopus oocytes were studied in outside-out patches. The mean single channel current–voltage relationship exhibited inward rectification in symmetric solutions with a chord conductance of ∼30 pS at −100 mV in 145 mM NaCl. The channel open state exhibited fast flickering with significant power beyond 10 kHz. Conformational changes, not ionic blockade, appeared responsible for the flickering. The equilibrium constant of Na+ binding in the pore was ∼150 mM at 0 mV and voltage dependent. The binding site appeared to be ∼0.2 of the electrical distance from the extracellular surface. The mean channel current and the excess noise had the selectivity: K+ > Rb+ > Cs+ > Na+ > Li+. ATP increased the probability of being open (Po) to a maximum of 0.6 with an EC50 of 11.2 μM and a Hill coefficient of 2.3. Lowering extracellular pH enhanced the apparent affinity of the channel for ATP with a pKa of ∼7.9, but did not cause a proton block of the open channel. High pH slowed the rise time to steps of ATP without affecting the fall time. The mean single channel amplitude was independent of pH, but the excess noise increased with decreasing pH. Kinetic analysis showed that ATP shortened the mean closed time but did not affect the mean open time. Maximum likelihood kinetic fitting of idealized single channel currents at different ATP concentrations produced a model with four sequential closed states (three binding steps) branching to two open states that converged on a final closed state. The ATP association rates increased with the sequential binding of ATP showing that the binding sites are not independent, but positively cooperative. Partially liganded channels do not appear to open. The predicted Po vs. ATP concentration closely matches the single channel current dose–response curve.


1995 ◽  
Vol 308 (1) ◽  
pp. 119-125 ◽  
Author(s):  
M Hohenegger ◽  
A Herrmann-Frank ◽  
M Richter ◽  
F Lehmann-Horn

We have tested the periodate-oxidized ATP analogue 2′,3′-dialdehyde adenosine triphosphate (oATP) as a ligand for the skeletal muscle ryanodine receptor/Ca(2+)-release channel. Ca2+ efflux from passively loaded heavy sarcoplasmic reticulum vesicles of skeletal muscle is biphasic. oATP stimulates the initial phase of Ca2+ release in a concentration-dependent manner (EC50 160 microM), and the efflux proceeds with a half-time in the range 100-200 ms. This oATP-modulated initial rapid Ca2+ release was specifically inhibited by millimolar concentrations of Mg2+ and micromolar concentrations of Ruthenium Red, indicating that the effect of oATP was mediated via the ryanodine receptor. The purified Ca(2+)-release channel was incorporated into planar lipid bilayers, and single-channel recordings were carried out to verify a direct interaction of oATP with the ryanodine receptor. Addition of oATP to the cytoplasmic side activated the channel with an EC50 of 76 microM, which is roughly 30-fold higher than the apparent affinity of ATP. The oATP-induced increase in the open probability of the ryanodine receptor displays a steep concentration-response curve with a Hill coefficient of approximately 2, which suggests a co-operativity of the ATP binding sites in the tetrameric protein. oATP binds to the ryanodine receptor in a quasi-irreversible manner via Schiff base formation between the aldehyde groups of oATP and amino groups in the nucleotide binding pocket. This allows for the covalent specific incorporation of [alpha-32P]oATP by borhydride reduction. A typical adenine nucleotide binding site cannot be identified in the primary sequence of the ryanodine receptor. Our results demonstrate that oATP can be used to probe the structure and function of the nucleotide binding pocket of the ryanodine receptor and presumably of other ATP-regulated ion channels.


2006 ◽  
Vol 127 (3) ◽  
pp. 329-340 ◽  
Author(s):  
Joachim Scholz-Starke ◽  
Armando Carpaneto ◽  
Franco Gambale

This study investigates the interaction of the aminoglycoside antibiotic neomycin with the slow vacuolar (SV) channel in vacuoles from Arabidopsis thaliana mesophyll cells. Patch-clamp experiments in the excised patch configuration revealed a complex pattern of neomycin effects on the channel: applied at concentrations in the submicromolar to millimolar range neomycin (a) blocked macroscopic SV currents in a voltage- and concentration-dependent manner, (b) slowed down activation and deactivation kinetics of the channel, and most interestingly, (c) at concentrations above 10 μM, neomycin shifted the SV activation threshold towards negative membrane potentials, causing a two-phasic activation at high concentrations. Single channel experiments showed that neomycin causes these macroscopic effects by combining a decrease of the single channel conductance with a concomitant increase of the channel's open probability. Our results clearly demonstrate that the SV channel can be activated at physiologically relevant tonoplast potentials in the presence of an organic effector molecule. We therefore propose the existence of a cellular equivalent regulating the activity of the SV channel in vivo.


1996 ◽  
Vol 84 (3) ◽  
pp. 626-635 ◽  
Author(s):  
Ching-Yue Yang ◽  
Chih-Shung Wong ◽  
Chuan-Cheng Yu ◽  
Hsiang-Ning Luk ◽  
Cheng-I Lin

Background Propofol may exert negative inotropic and chronotropic actions in the heart. Single-channel studies show that propofol affects the kinetics of opening and closing of cardiac L-type calcium channels (ICa(L)) without altering channel conductance. The aim of this study was to investigate the mechanisms of depressant effects of propofol on cardiac whole-cell ICa(L). Methods Single ventricular myocytes were freshly dissciated from guinea pig hearts using enzymatic isolation. One-suction electrode voltage-clamp technique (whole-cell mode) was used. LCa(L) was separated from other contaminated ionic currents. Propofol was applied in the commercial 10% Intralipid emulsion formula (Zeneca, UK). Results In isolated cardiomyocytes, propofol significantly inhibited whole-cell ICa(L) in a concentration-dependent manner (K D = 52.0 microM; Hill coefficient = 1.3). The solvent (Intralipid) did not affect ICa(L). Propofol decreased ICa(L) at all potentials tested along the voltage axis and reduced the slope conductance. The threshold potential for activation and the peak potential of the current-voltage relationship were not changed by propofol. The steady-state activation curves overlapped in the absence and the presence of 56 microM propofol. In contrast, the steady-state inactivation curve was shifted in the hyperpolarizing direction. The time course of the recovery from inactivation was delayed by 56 microM propofol. The blocking action on ICa(L) of propofol shows marked resting block and use-dependent block. Propofol caused more pronounced inhibition at a higher stimulation frequency. The effect of propofol on the inactivation process was even more clear on ICa(L). Conclusions The authors conclude tha propofol, at supratherapeutic concentrations, inhibits cardiac ICa(L). This inhibition is mainly due to a shift of inactivation curve and a reduction in slope conductance.


2008 ◽  
Vol 99 (2) ◽  
pp. 999-1007 ◽  
Author(s):  
Bernard Hsiao ◽  
Karla B. Mihalak ◽  
Karl L. Magleby ◽  
Charles W. Luetje

Micromolar zinc potentiates neuronal nicotinic acetylcholine receptors (nAChRs) in a subtype-dependent manner. Zinc potentiates receptor function even at saturating agonist concentrations, without altering the receptor desensitization rate. Potentiation could occur through an increase in the number of available receptors, an increase in single-channel current amplitude, or an increase in single-channel open probability. To distinguish among these possibilities, we examined rat neuronal nAChRs expressed in Xenopus oocytes. Blockade of a large fraction of ACh activated α4β4 or α4β2 receptors by the open channel blocker hexamethonium failed to change the extent of potentiation by zinc, suggesting that zinc does not change the number of available receptors. The single-channel amplitudes of ACh (1 μM) activated α4β4 receptors in outside-out patches were similar in the absence and the presence of 100 μM zinc (3.0 ± 0.1 and 2.9 ± 0.1 pA, respectively). To determine the effect of zinc on single-channel open probability, we examined α4β4 receptors in cell-attached patches. The open probability at 100 nM ACh (0.011 ± 0.002) was increased 4.5-fold by 100 μM zinc (0.050 ± 0.008), accounting for most of the potentiation observed at the whole cell level. The increase in open probability was due to an increase in burst duration, which increased from 207 ± 38 ms in the absence of zinc to 830 ± 189 ms in the presence of zinc. Our results suggest that potentiation of neuronal nAChRs by zinc is due to a stabilization of the bursting states of the receptor.


Sign in / Sign up

Export Citation Format

Share Document