Plasticity of response properties of inferior colliculus neurons following acute cochlear damage

1996 ◽  
Vol 75 (1) ◽  
pp. 171-183 ◽  
Author(s):  
J. Wang ◽  
R. J. Salvi ◽  
N. Powers

1. The discharge patterns of 40 neurons in the central nucleus of the inferior colliculus (ICC) of the chinchilla were evaluated before and after acute cochlea trauma from intense tone exposure. Single-unit recordings were obtained from neurons in the ICC contralateral to the sound-stimulated ear. Cochlear trauma was induced with a short-duration (15-25 min), high-intensity pure tone (95-115 dB SPL) at a frequency above the neuron's characteristic frequency (CF). The aim of the traumatizing exposure was to damage the peripheral sensory receptors associated with frequencies above the neuron's CF. The damage was expected to attenuate inputs to the neural circuits responsible for activating the inhibitory sidebands above CF. 2. Three types of frequency-threshold tuning curves were observed before the exposure: 1) open V tuning curves (55%) that became wider as sound intensity increased; 2) level-tolerant tuning curves (37.5%) that maintained a very narrow bandwidth even at high sound intensities; and 3) upper-threshold tuning curves (7.5%) in which excitatory responses were elicited at low and moderate intensities, but not at high intensities. The traumatizing exposure caused a dramatic widening of level-tolerant (80% of sample) and upper-threshold tuning curves (100% of sample) at high sound intensities but caused almost no change in the low-threshold tip of the tuning curves. By contrast, tuning curves with an open V configuration were generally unaffected (approximately 90% of sample) by the traumatizing exposure. 3. Discharge rate-level functions in the ICC were of two general types: 1) strongly nonmonotonic (60%) or 2) saturating, monotonic (40%). The traumatizing exposure caused a significant increase in the suprathreshold discharge rates in 70% of all neurons studied. Among the neurons with strongly nonmonotonic discharge rate-level functions, 93% showed a significant increase in discharge rate. 4. The poststimulus time histograms (PSTH) to tone bursts were of three main types: 1) onset, 2) pauser, and 3) sustained responders. The traumatizing exposure had almost no effect on the PSTH of onset or sustained responders. However, pause PSTH frequently (75%) showed a significant decrease in the pause duration and an increase in the sustained discharge rate following the pause after the exposure. 5. The results suggest that the response properties of neurons with extremely narrow tuning curves and nonmonotonic discharge rate-level functions are shaped by an inhibitory circuit that is activated by frequencies above the high-frequency flank of the tuning curve. This inhibitory circuit modifies the excitatory response in the following ways: 1) it narrows the excitatory response area at suprathreshold intensities particularly at frequencies below CF, 2) it alters the shape of the discharge rate-level function by suppressing the discharge rates at suprathreshold intensities, and 3) it modifies the temporal discharge pattern of the pause PSTH by suppressing neural activity that occurs after the onset response. The effects of these inhibitory inputs can be reduced (disinhibition) by damaging the sensory cells in the inner ear that activate this circuit. The exact locus of the inhibitory circuit(s) is unknown but may involve inhibitory inputs located at the level of the cochlear nucleus and/or at levels up to the inferior colliculus.

1992 ◽  
Vol 68 (5) ◽  
pp. 1760-1774 ◽  
Author(s):  
L. Yang ◽  
G. D. Pollak ◽  
C. Resler

1. The influence of bicuculline on the tuning curves of 65 neurons in the inferior colliculus of the mustache bat was investigated. Single units were recorded with multibarrel electrodes where one barrel contained bicuculline, an antagonist specific for gamma-amino-butyric acid (GABA)A receptors. Fifty-nine tuning curves were recorded from units that were sharply tuned to 60 kHz, the dominant frequency of the bat's orientation call, but six tuning curves were also recorded from units tuned to lower frequencies and whose tuning curves were broader than the 60 kHz cells. Tuning curves were constructed from peristimulus time (PST) histograms obtained over a wide range of frequency-intensity combinations. Thus tuning curves, PST histograms evoked by frequencies within the tuning curve, and rate-level functions at the best frequency were obtained before iontophoresis of bicuculline and compared with the tuning curves and response properties obtained during the administration of bicuculline. 2. Three general types of tuning curves were obtained: 1) open tuning curves that broadened on both the high- and low-frequency sides with increasing sound level; 2) level-tolerant tuning curves in which the width of the tuning curve remained uniformly narrow with increasing sound level; and 3) upper-threshold tuning curves, which did not discharge to high-intensity tone bursts at the best frequency, thereby creating closed or folded tuning curves. 3. One major finding is that GABAergic inhibition plays an important role in sharpening frequency tuning properties of many neurons in the mustache bat inferior colliculus. In response to blocking GABAergic inputs with bicuculline, the tuning curves broadened in 42% of the neurons that were sharply tuned to 60 kHz. The degree of change in most units varied with sound level: tuning curves were least affected, or not affected at all, within 10 dB of threshold and showed progressively greater changes at higher sound levels. These effects were seen in units that had open, level-tolerant, and upper-threshold tuning curves. 4. A second key result is that bicuculline affected rate-level functions and/or temporal discharge patterns in many units. Bicuculline transformed the rate-level functions of 13 cells that originally had nonmonotonic rate level functions, from strongly nonmonotonic into weakly nonmonotonic or monotonic functions. It also changed the temporal discharge patterns in 22 cells, and the changes were often frequency specific.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 75 (6) ◽  
pp. 2211-2219 ◽  
Author(s):  
P. S. Palombi ◽  
D. M. Caspary

1. Recent studies have suggested that gamma-aminobutyric acid (GABA) inputs shape monaural and binaural neuronal response properties in the central nucleus of the inferior colliculus (CIC). CIC neurons receive major inhibitory GABAergic projections from intrinsic, commissural, and extrinsic sources. Many GABAergic projections now are thought to arise from cells that are tonotopically matched to their CIC targets. 2. We tested the hypothesis that GABA circuits are aligned primarily within the CIC target neuron's excitatory response area and therefore have their greatest effects on discharge rate mainly within that frequency domain. GABA inhibition was examined by recording families of isointensity contours before, during, and after GABAA receptor blockade. Iontophoretic application of bicuculline-methiodide (BMI) was used to block GABAA receptors. Quantitative measures of frequency bandwidth and z-score analysis of discharge rate within the excitatory receptive field were used to compare pre- and postdrug conditions. 3. Chinchilla CIC unit response properties were similar to those described for other species, with a high percentage of phasic temporal response patterns and nonmonotonic rate-intensity functions in response to monaural contralateral characteristic frequency (CF) tones. Binaural responses of most CIC neurons showed suppression of contralaterally evoked responses by ipsilateral stimulation. 4. For 85% of CIC neurons, blockade of GABAA inputs was found to increase discharge rate within the excitatory response area. Forty-five percent were classified as near-CF changes and 32% as near-CF and low side. Changes in lateral/flanking inhibition in the absence of near-CF changes were never observed. Forty-one percent of CIC neurons displayed less than a 10% increase in frequency bandwidth at 25-35 dB above threshold with BMI application. 5. These data suggest that GABA inhibition arises primarily from neurons with inhibitory fields aligned with their CIC targets. Thus the effect of the inhibition is primarily contained within or overlapping each target neuron's excitatory response area. CIC GABAergic circuits may function to adjust the gain needed for coding complex signals over a wide dynamic range.


1987 ◽  
Vol 57 (4) ◽  
pp. 1130-1147 ◽  
Author(s):  
M. N. Semple ◽  
L. M. Kitzes

The central auditory system could encode information about the location of a high-frequency sound source by comparing the sound pressure levels at the ears. Two potential computations are the interaural intensity difference (IID) and the average binaural intensity (ABI). In this study of the central nucleus of the inferior colliculus (ICC) of the anesthetized gerbil, we demonstrate that responses of 85% of the 97 single units in our sample were jointly influenced by IID and ABI. For a given ABI, discharge rate of most units is a sigmoidal function of IID, and peak rates occur at IIDs favoring the contralateral ear. Most commonly, successive increments of ABI cause successive shifts of the IID functions toward IIDs favoring the ipsilateral ear. Neurons displaying this behavior include many that would conventionally be classified EI (receiving predominantly excitatory input arising from one ear and inhibitory input from the other), many that would be classified EE (receiving predominantly excitatory input arising from each ear), and all that are responsive only to contralateral stimulation. The IID sensitivity of a very few EI neurons is unaffected by ABI, except near threshold. Such units could provide directional information that is independent of source intensity. A few EE neurons are very sensitive to ABI, but are minimally sensitive to IID. Nevertheless, our data indicate that responses of most EE units in ICC are strongly dominated by excitation of contralateral origin. For some units, discharge rate is nonmonotonically related to IID and is maximal when the stimuli at the two ears are of comparable sound pressure. This preference for zero IID is common for all binaural levels. Many EI neurons respond nonmonotonically to ABI. Discharge rates are greater for IIDs representative of contralateral space and are maximal at a single best ABI. For a subset of these neurons, the influence arising from the ipsilateral ear is comprised of a mixture of excitation and inhibition. As a consequence, discharge rates are nonmonotonically related not only to ABI but also to IID. This dual nonmonotonicity creates a clear focus of peak response at a particular ABI/IID combination. Because of their mixed monaural influences, such units would be ascribed to different classes of the conventional (EE/EI) binaural classification scheme depending on the binaural level presented. Several response classes were identified in this study, and each might contribute differently to the encoding of spatial information.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 65 (2) ◽  
pp. 383-392 ◽  
Author(s):  
L. Aitkin

1. The responses as a function of stimulus level of 125 single units in the inferior colliculus of anesthetized cats were studied with the use of free-field acoustic stimuli. 2. The characteristic frequency (CF; frequency at which threshold was lowest) of each unit was determined, and stimuli were presented from one of three speaker positions: 45 degrees contralateral to the midline, midline, and 45 degrees ipsilateral to the midline. 3. For each unit a variety of stimulus levels was presented at CF, and the total spike count was summed for 20 stimuli at each level. If time permitted, a similar series of levels of noise was presented. 4. Four classes of rate-level (RL) functions were observed. Monotonic increases in firing rate were observed in 10% of units stimulated with CF stimuli and 57% of units studied with noise. Nonmonotonic RL functions, for which firing first increased and then declined to less than 50% of the peak level, were observed in 61% of units responding to CF tones and in 10% responding to noise. Plateau functions, with shapes lying between these, accounted for 19% of CF responses and the remaining units excited by noise. Some very complex shapes that could not be categorized into the above groups were seen in the remaining 10% of the units responding to CF stimuli. 5. The RL functions of units studied with both noise and CF tones could belong to different classes; commonly, nonmonotonic RL functions to tones were associated with monotonic RL functions to noise. The noise thresholds averaged 10 dB, some 10-20 dB less sensitive than those to CF stimuli. 6. For the vast majority of both noise and tone responses, stimuli from the contralateral location were more effective than those from the other two positions in terms of a lower threshold, higher peak discharge rate, and, for nonmonotonic units, a lower sound level at which the function became nonmonotonic (turnover point). 7. The turnover points of nonmonotonic functions at any given CF could be spread broadly but, overall, tended to be concentrated between -6 and 44 dB. 8. The dynamic ranges (range of levels over which firing rate increased) were larger for monotonic and plateau functions than for nonmonotonic functions, which had dynamic ranges less than 45 dB. The median dynamic range for units stimulated with CF tones was 20 dB and for noise stimuli, 40 dB.(ABSTRACT TRUNCATED AT 400 WORDS)


1987 ◽  
Vol 57 (4) ◽  
pp. 1185-1200 ◽  
Author(s):  
L. M. Aitkin ◽  
R. L. Martin

The responses to changes in stimulus azimuth of 220 high best-frequency (BF) (greater than 3 kHz) units in the central nucleus of the inferior colliculus of the anesthetized cat were studied with BF tones (220 units) and noise stimuli (84 units). By this means we hoped to gain some insights into the way the azimuthal locations of high BF stimuli were represented in the inferior colliculus. For each unit the discharge rate was determined for stimuli located along a plane tilted at 20 degrees above the horizontal. This plane was chosen to optimize pinna directionality. Locations in the frontal field were sampled in 10-20 degree steps around a 170 degree arc. These measurements were repeated at a number of different stimulus intensities until the directional properties of the unit became clear. Units for which the functions relating discharge rate to azimuth for a given stimulus showed a clear feature (peak or border), the azimuthal location of which varied little with intensities between 20 and 40 dB above threshold, were defined as being azimuth selective for that stimulus. Only 13% of units were azimuth selective for BF tones, whereas 44% were selective for noise. Many azimuth functions for selective units were of the plateau-shaped type for which relatively high discharge rates occurring at most contralateral azimuths declined steeply to near zero and remained low for most ipsilateral azimuths. These plateau-shaped functions were most common for tonal stimuli. Other functions showed a fixed azimuth of maximum firing (best azimuth); these were more common for noise than for tonal stimuli. Detailed azimuth functions for both tone and noise stimuli were measured for 63 units. Some exhibited the same kind of azimuth function to both stimuli. However, 18 units were azimuth selective to noise but not to tones. The borders of plateau-shaped functions obtained using both noise and tonal stimuli were concentrated within 20 degrees of the median plane. Very few units had borders that spanned peripheral ipsilateral or contralateral azimuths. Although the best azimuths of some noise azimuth functions were observed to lie at these peripheral azimuths, the majority occurred around 20 degrees contralateral to the median plane. The recording sites for units were related to a three-by-three matrix of rostrocaudal and mediolateral locations across the central nucleus. Units that were azimuth selective to noise were distributed fairly evenly throughout the central nucleus, whereas units azimuth selective to tones formed highest proportions rostrally.(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 83 (1) ◽  
pp. 128-138 ◽  
Author(s):  
Alexander V. Galazyuk ◽  
Daniel Llano ◽  
Albert S. Feng

Sounds in real-world situations seldom occur in isolation. In spite of this, most studies in the auditory system have employed sounds that serve to isolate physiological responses, namely, at low rates of stimulation. It is unclear, however, whether the basic response properties of a neuron derived thereof, such as its amplitude and frequency selectivities, are applicable to real-world situations where sounds occur in rapid succession. In the present study, we investigated one of the basic response properties of neurons in the bat inferior colliculus (IC), i.e., the rate-level function, to tone pulses in three different configurations: individual tone pulses of constant amplitude at different rates of stimulation, random-amplitude pulse trains, and dynamic-amplitude-modulated pulse trains the temporal pattern of which was similar to what bats encounter in a behavioral context. We reported that for the majority of IC neurons, amplitude selectivity to tone pulses was dependent on the rate of stimulation. In general, the selectivity was greater at high rates or in a behavioral context than at low rates. For a small population of IC neurons, however, the rate of stimulation had little or no effect on their rate-level functions. Thus for IC neurons, responses to sounds presented at low rates may or may not be used to predict the responses to the same stimuli presented at high rates or in a behavioral context. The possible neural mechanisms underlying the rate-dependent effects are discussed.


1988 ◽  
Vol 60 (6) ◽  
pp. 1823-1840 ◽  
Author(s):  
C. E. Schreiner ◽  
G. Langner

1. The topographical distributions of single-unit and multiple-unit responses to amplitude-modulated tones--and to other relevant parameters of simple tonal stimuli--were defined across the main frequency representational gradient and within narrow frequency ranges represented in "frequency band laminae" in the principal midbrain auditory nucleus, the central nucleus of the inferior colliculus (ICC), in adult, barbiturate-anesthetized cats. 2. Responses to amplitude-modulated tones with the carrier set at the characteristic frequency (CF) of recorded neurons were obtained at many ICC locations in each experiment. The best modulation frequency (BMF) of neurons was defined at each site as that modulation frequency producing the highest neural discharge rate. Encountered BMFs ranged from approximately 10 to 1,000 Hz. A significant range of BMFs were recorded for neurons with any given characteristic frequency. BMF ranges varied as a systematic function of CF and of ICC recording depth. 3. Recorded BMFs were distributed topographically within functionally defined ICC frequency band laminae. Highest BMFs were found clustered in an ICC sector roughly between the middle and lateral third of its frequency band laminae. Progressively lower BMFs were recorded with increasing distance across the laminae in any direction away from the highest-BMF cluster. That is, "iso-BMF contours" were arrayed concentrically around the highest-BMF region. 4. Within frequency band laminae centered at approximately 3 and 12 kHz, quality factors (Q10 dBS) of frequency tuning curves were found to be between 0.8 and 8. Q10 dB values were distributed topographically within given frequency band laminae. Responses with narrow tuning curves (high Q10 dB values) were clustered in the middle third of the mediolateral extent of laminae; sharpness of tuning declined systematically away from this focus of highest Q10 dB values. The center of this distribution did not coincide with the center of the BMF distribution within the same lamina. 5. For neurons at greater than 90% of the ICC loci studied in these experiments, onset latencies to CF tones defined approximately 60 dB above response threshold fell within a range between 5 and 18 ms. Across a given frequency band lamina, onset latencies varied systematically, with longest response latencies recorded medially, and progressively shorter latencies recorded progressively more laterally. 6. Binaural interaction types were systematically distributed within frequency-band laminae. A cluster of excitatory-excitatory (EE) was seen, covering approximately one-third of the mapped area.(ABSTRACT TRUNCATED AT 400 WORDS)


2012 ◽  
Vol 127 (1) ◽  
pp. 15-19 ◽  
Author(s):  
A Mirza ◽  
L McClelland ◽  
M Daniel ◽  
N Jones

AbstractBackground:Many ENT conditions can be treated in the emergency clinic on an ambulatory basis. Our clinic traditionally had been run by foundation year two and specialty trainee doctors (period one). However, with perceived increasing inexperience, a dedicated registrar was assigned to support the clinic (period two). This study compared admission and discharge rates for periods one and two to assess if greater registrar input affected discharge rate; an increase in discharge rate was used as a surrogate marker of efficiency.Method:Data was collected prospectively for patients seen in the ENT emergency clinic between 1 August 2009 and 31 July 2011. Time period one included data from patients seen between 1 August 2009 and 31 July 2010, and time period two included data collected between 1 August 2010 and 31 July 2011.Results:The introduction of greater registrar support increased the number of patients that were discharged, and led to a reduction in the number of children requiring the operating theatre.Conclusion:The findings, which were determined using clinic outcomes as markers of the quality of care, highlighted the benefits of increasing senior input within the ENT emergency clinic.


1999 ◽  
Vol 82 (1) ◽  
pp. 164-175 ◽  
Author(s):  
Kevin A. Davis ◽  
Ramnarayan Ramachandran ◽  
Bradford J. May

Single units in the central nucleus of the inferior colliculus (ICC) of unanesthetized decerebrate cats can be grouped into three distinct types (V, I, and O) according to the patterns of excitation and inhibition revealed in contralateral frequency response maps. This study extends the description of these response types by assessing their ipsilateral and binaural response map properties. Here the nature of ipsilateral inputs is evaluated directly using frequency response maps and compared with results obtained from methods that rely on sensitivity to interaural level differences (ILDs). In general, there is a one-to-one correspondence between observed ipsilateral input characteristics and those inferred from ILD manipulations. Type V units receive ipsilateral excitation and show binaural facilitation (EE properties); type I and type O units receive ipsilateral inhibition and show binaural excitatory/inhibitory (EI) interactions. Analyses of binaural frequency response maps show that these ILD effects extend over the entire receptive field of ICC units. Thus the range of frequencies that elicits excitation from type V units is expanded with increasing levels of ipsilateral stimulation, whereas the excitatory bandwidth of type I and O units decreases under the same binaural conditions. For the majority of ICC units, application of bicuculline, an antagonist for GABAA-mediated inhibition, does not alter the basic effects of binaural stimulation; rather, it primarily increases spontaneous and maximum discharge rates. These results support our previous interpretations of the putative dominant inputs to ICC response types and have important implications for midbrain processing of competing free-field sounds that reach the listener with different directional signatures.


2005 ◽  
Vol 93 (1) ◽  
pp. 557-569 ◽  
Author(s):  
Annette M. Taberner ◽  
M. Charles Liberman

The availability of transgenic and mutant lines makes the mouse a valuable model for study of the inner ear, and a powerful window into cochlear function can be obtained by recordings from single auditory nerve (AN) fibers. This study provides the first systematic description of spontaneous and sound-evoked discharge properties of AN fibers in mouse, specifically in CBA/CaJ and C57BL/6 strains, both commonly used in auditory research. Response properties of 196 AN fibers from CBA/CaJ and 58 from C57BL/6 were analyzed, including spontaneous rates (SR), tuning curves, rate versus level functions, dynamic range, response adaptation, phase-locking, and the relation between SR and these response properties. The only significant interstrain difference was the elevation of high-frequency thresholds in C57BL/6. In general, mouse AN fibers showed similar responses to other mammals: sharpness of tuning increased with characteristic frequency, which ranged from 2.5 to 70 kHz; SRs ranged from 0 to 120 sp/s, and fibers with low SR (<1 sp/s) had higher thresholds, and wider dynamic ranges than fibers with high SR. Dynamic ranges for mouse high-SR fibers were smaller (<20 dB) than those seen in other mammals. Phase-locking was seen for tone frequencies <4 kHz. Maximum synchronization indices were lower than those in cat but similar to those found in guinea pig.


Sign in / Sign up

Export Citation Format

Share Document