Spontaneous and stimulation-induced synchronized burst afterdischarges in the isolated CA1 of kainate-treated rats

1996 ◽  
Vol 76 (4) ◽  
pp. 2231-2239 ◽  
Author(s):  
C. L. Meier ◽  
F. E. Dudek

1. Kainate treatment preferentially kills dentate hilar neurons and CA3 pyramidal cells and ultimately leads to a chronic epileptic state. Bicuculline-induced epileptiform bursts were studied to test the hypothesis that multiple kainate injections and consequent status epilepticus would lead-after weeks to months of recovery-to prolonged synchronous afterdischarges in the isolated CA1 area of rat hippocampal slices, as would be expected if new recurrent excitatory circuits had formed. 2. Synaptic responses evoked in CA1 pyramidal cells of rats injected subcutaneously with kainate (10 hourly injections, 5 mg/kg each) 24-316 days before the slice experiment were compared with responses in slices from untreated and saline-injected controls. The maximal response to stratum radiatum stimulation in normal solution consisted of two to eight population spikes. 3. When gamma-aminobutyric acid-A receptor-mediated inhibition was reduced with bicuculline, synchronized burst afterdischarges after the initial stimulation-evoked burst, similar to the type of activity described in area CA3 under conditions where inhibition is impaired, occurred in 23% of slices. 4. The prolonged synchronized burst afterdischarges in the isolated CA1 area of kainate-treated rats were associated with large excitatory postsynaptic potentials (EPSPs). These prolonged bursts were not graded with the stimulus intensity; rather, they were triggered in an all-or-none manner, even though there was some variability across bursts. The bursts of population spikes also were correlated with subthreshold EPSPs. 5. Slices that had synchronized burst afterdischarges had significantly more damage in area CA3 than slices without afterdischarges. 6. The data indicate that kainate-induced damage in CA3 can lead to prolonged synchronous afterdischarges, even after CA1 is surgically isolated from the CA3 area. Because the repetitive bursts during the prolonged and synchronous afterdischarges were associated with large EPSPs, these data suggest that kainate-induced damage to CA3 and subsequent degeneration of synaptic terminals in the CA1 area causes the formation of new recurrent excitatory circuits that could be involved in the development of chronic epilepsy.

1994 ◽  
Vol 72 (5) ◽  
pp. 2167-2180 ◽  
Author(s):  
H. E. Scharfman

1. Simultaneous intracellular recordings of area CA3 pyramidal cells and dentate hilar “mossy” cells were made in rat hippocampal slices to test the hypothesis that area CA3 pyramidal cells excite mossy cells monosynaptically. Mossy cells and pyramidal cells were differentiated by location and electrophysiological characteristics. When cells were impaled near the border of area CA3 and the hilus, their identity was confirmed morphologically after injection of the marker Neurobiotin. 2. Evidence for monosynaptic excitation of a mossy cell by a pyramidal cell was obtained in 7 of 481 (1.4%) paired recordings. In these cases, a pyramidal cell action potential was followed immediately by a 0.40 to 6.75 (mean, 2.26) mV depolarization in the simultaneously recorded mossy cell (mossy cell membrane potentials, -60 to -70 mV). Given that pyramidal cells used an excitatory amino acid as a neurotransmitter (Cotman and Nadler 1987; Ottersen and Storm-Mathisen 1987) and recordings were made in the presence of the GABAA receptor antagonist bicuculline (25 microM), it is likely that the depolarizations were unitary excitatory postsynaptic potentials (EPSPs). 3. Unitary EPSPs of mossy cells were prone to apparent “failure.” The probability of failure was extremely high (up to 0.72; mean = 0.48) if the effects of all presynaptic action potentials were examined, including action potentials triggered inadvertently during other spontaneous EPSPs of the mossy cell. Probability of failure was relatively low (as low as 0; mean = 0.24) if action potentials that occurred during spontaneous activity of the mossy cell were excluded. These data suggest that unitary EPSPs produced by pyramidal cells are strongly affected by concurrent synaptic inputs to the mossy cell. 4. Unitary EPSPs were not clearly affected by manipulation of the mossy cell's membrane potential. This is consistent with the recent report that area CA3 pyramidal cells innervate distal dendrites of mossy cells (Kunkel et al. 1993). Such a distal location also may contribute to the high incidence of apparent failures. 5. Characteristics of unitary EPSPs generated by pyramidal cells were compared with the properties of the unitary EPSPs produced by granule cells. In two slices, pyramidal cell and granule cell inputs to the same mossy cell were compared. In other slices, inputs to different mossy cells were compared. In all experiments, unitary EPSPs produced by granule cells were larger in amplitude but similar in time course to unitary EPSPs produced by pyramidal cells. Probability of failure was lower and paired-pulse facilitation more common among EPSPs triggered by granule cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 70 (3) ◽  
pp. 1018-1029 ◽  
Author(s):  
M. Avoli ◽  
C. Psarropoulou ◽  
V. Tancredi ◽  
Y. Fueta

1. Extracellular field potential and intracellular recordings were made in the CA3 subfield of hippocampal slices obtained from 10- to 24-day-old rats during perfusion with artificial cerebrospinal fluid (ACSF) containing the convulsant 4-aminopyridine (4-AP, 50 microM). 2. Three types of spontaneous, synchronous activity were recorded in the presence of 4-AP by employing extracellular microelectrodes positioned in the CA3 stratum (s.) radiatum: first, inter-ictal-like discharges that lasted 0.2-1.2 s and had an occurrence rate of 0.3-1.3 Hz; second, ictal-like events (duration: 3-40 s) that occurred at 4-38 x 10(-3) Hz; and third, large-amplitude (up to 8 mV) negative-going potentials that preceded the onset of the ictal-like events and thus appeared to initiate them. 3. None of these synchronous activities was consistently modified by addition of antagonists of the N-methyl-D-aspartate (NMDA) receptor to the ACSF. In contrast, the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 2-10 microM) reversibly blocked interictal- and ictallike discharges. The only synchronous, spontaneous activity recorded in this type of medium consisted of the negative-going potentials that were abolished by the GABAA receptor antagonists bicuculline methiodide (5-20 microM) or picrotoxin (50 microM). Hence they were mediated through the activation of the GABAA receptor. 4. Profile analysis of the 4-AP-induced synchronous activity revealed that the gamma-aminobutyric acid (GABA)-mediated field potential had maximal negative amplitude in s. lacunosum-moleculare, attained equipotentiality at the border between s. radiatum and s. pyramidale, and became positive-going in s. oriens. These findings indicated that the GABA-mediated field potential presumably represented a depolarization occurring in the dendrites of CA3 pyramidal cells. 5. This conclusion was supported by intracellular analysis of the 4-AP-induced activity. The GABA-mediated potential was reflected by a depolarization of the membrane of CA3 pyramidal cells that triggered a few variable-amplitude, fractionated spikes or fast action potentials. By contrast, the ictal-like discharge was associated with a prolonged depolarization during which repetitive bursts of action potentials occurred. Short-lasting depolarizations with bursts of action potentials occurred during each interictal-like discharge. 6. The GABA-mediated potential recorded intracellularly in the presence of CNQX consisted of a prolonged depolarization (up to 12 s) that was still capable of triggering a few fast action potentials and/or fractionated spikes.(ABSTRACT TRUNCATED AT 400 WORDS)


2001 ◽  
Vol 94 (2) ◽  
pp. 340-347 ◽  
Author(s):  
Koichi Nishikawa ◽  
M. Bruce MacIver

Background A relatively small number of inhibitory interneurons can control the excitability and synchronization of large numbers of pyramidal cells in hippocampus and other cortical regions. Thus, anesthetic modulation of interneurons could play an important role for the maintenance of anesthesia. The aim of this study was to compare effects produced by volatile anesthetics on inhibitory postsynaptic currents (IPSCs) of rat hippocampal interneurons. Methods Pharmacologically isolated gamma-aminobutyric acid type A (GABAA) receptor-mediated IPSCs were recorded with whole cell patch-clamp techniques in visually identified interneurons of rat hippocampal slices. Neurons located in the stratum radiatum-lacunosum moleculare of the CA1 region were studied. The effects of clinically relevant concentrations (1.0 rat minimum alveolar concentration) of halothane, enflurane, isoflurane, and sevoflurane were compared on kinetics of both stimulus-evoked and spontaneous GABAA receptor-mediated IPSCs in interneurons. Results Halothane (1.2 vol% approximately 0.35 mm), enflurane (2.2 vol% approximately 0.60 mm), isoflurane (1.4 vol% approximately 0.50 mm), and sevoflurane (2.7 vol% approximately 0.40 mm) preferentially depressed evoked IPSC amplitudes to 79.8 +/- 9.3% of control (n = 5), 38.2 +/- 8.6% (n = 6), 52.4 +/- 8.4% (n = 5), and 46.1 +/- 16.0% (n = 8), respectively. In addition, all anesthetics differentially prolonged the decay time constant of evoked IPSCs to 290.1 +/- 33.2% of control, 423.6 +/- 47.1, 277.0 +/- 32.2, and 529 +/- 48.5%, respectively. The frequencies of spontaneous IPSCs were increased by all anesthetics (twofold to threefold). Thus, the total negative charge transfer mediated by GABAA receptors between synaptically connected interneurons was enhanced by all anesthetics. Conclusions Volatile anesthetics differentially enhanced GABAA receptor-mediated synaptic inhibition in rat hippocampal interneurons, suggesting that hippocampal interneuron circuits are depressed by these anesthetics in an agent-specific manner.


2000 ◽  
Vol 83 (2) ◽  
pp. 723-734 ◽  
Author(s):  
Melisa W. Y. Ho ◽  
Annette G. Beck-Sickinger ◽  
William F. Colmers

Neuropeptide Y (NPY) potently inhibits excitatory synaptic transmission in the hippocampus, acting predominantly via a presynaptic Y2 receptor. Recent reports that the Y5 receptor may mediate the anticonvulsant actions of NPY in vivo prompted us to test the hypothesis that Y5receptors inhibit synaptic excitation in the hippocampal slice and, furthermore, that they are effective in an in vitro model of anticonvulsant action. Two putative Y5 receptor–preferring agonists inhibited excitatory postsynaptic currents (EPSCs) evoked by stimulation of stratum radiatum in pyramidal cells. We recorded initially from area CA1 pyramidal cells, but subsequently switched to cells from the subiculum, where a much greater frequency of response was observed to Y5 agonist application. Bothd-Trp32NPY (1 μM) and [ahx8–20]Pro34NPY (3 μM), a centrally truncated, Y1/Y5 agonist we synthesized, inhibited stimulus-evoked EPSCs in subicular pyramidal cells by 44.0 ± 5.7% and 51.3 ± 3.5% (mean ± SE), in 37 and 58% of cells, respectively. By contrast, the less selective centrally truncated agonist, [ahx8–20] NPY (1 μM), was more potent (66.4 ± 4.1% inhibition) and more widely effective, suppressing the EPSC in 86% of subicular neurons. The site of action of all NPY agonists tested was most probably presynaptic, because agonist application caused no changes in postsynaptic membrane properties. The selective Y1 antagonist, BIBP3226 (1 μM), did not reduce the effect of either more selective agonist, indicating that they activated presynaptic Y5 receptors. Y5 receptor–mediated synaptic inhibition was more frequently observed in slices from younger animals, whereas the nonselective agonist appeared equally effective at all ages tested. Because of the similarity with the previously reported actions of Y2 receptors, we tested the ability of Y5receptor agonists to suppress stimulus train-induced bursting (STIB), an in vitro model of ictaform activity, in both area CA3 and the subiculum. Neither [ahx8–20]Pro34NPY nord-Trp32NPY were significantly effective in suppressing or shortening STIB-induced afterdischarge, with <20% of slices responding to these agonists in recordings from CA3 and none in subiculum. By contrast, 1 μM each of [ahx8–20]NPY, the Y2 agonist, [ahx5–24]NPY, and particularly NPY itself suppressed the afterdischarge in area CA3 and the subiculum, as reported earlier. We conclude that Y5receptors appear to regulate excitability to some degree in the subiculum of young rats, but their contribution is relatively small compared with those of Y2 receptors, declines with age, and is insufficient to block or significantly attenuate STIB-induced afterdischarges.


1993 ◽  
Vol 70 (6) ◽  
pp. 2251-2259 ◽  
Author(s):  
R. Khazipov ◽  
P. Bregestovski ◽  
Y. Ben-Ari

1. The effects of anoxia on inhibitory synaptic transmission were studied in hippocampal slices of 3- to 4-wk-old rats. CA1 pyramidal cells were examined by whole-cell patch-clamp recording. Synaptic currents were evoked by “distant” (> 0.5 mm) or “close” (< 0.5 mm) electrical stimulation in the stratum radiatum. 2. The excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs) evoked by distant stimulation were completely suppressed by brief anoxia (95% N2-5% CO2 for 4-6 min) and recovered upon reoxygenation. IPSCs were more sensitive to anoxia than EPSCs. EPSCs and IPSCs evoked by distant stimulation were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 microM) and D-2-amino-5-phosphonopentanoate (APV; 50 microM). This indicates that IPSCs were mediated via a polysynaptic pathway that involves glutamate receptors. 3. Synaptic currents evoked by close stimulation were only partly inhibited by anoxia. The bicuculline-sensitive gamma-aminobutyric acid-A (GABAA) receptor-mediated synaptic currents were particularly resistant to anoxia, suggesting that the GABAergic input to pyramidal neurons is not inhibited by anoxia. 4. At close stimulation in the stratum radiatum, monosynaptic IPSCs could be evoked in the presence of CNQX (20 microM) and APV (50 microM). The monosynaptic IPSCs had early bicuculline (15 microM) and late CGP 35348 (100 microM)-sensitive components confirming an involvement of GABAA and GABAB receptors (IPSCA and IPSCB components), respectively. 5. The monosynaptic IPSCA component evoked by close stimulation was not changed significantly during and after brief anoxia. Responses to pressure application of isoguvacine (GABAA agonist) were also not affected by anoxia.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 70 (3) ◽  
pp. 1076-1085 ◽  
Author(s):  
C. Rovira ◽  
Y. Ben-Ari

1. The effects of type I (BZ1) and type II (BZ2) benzodiazepine receptor ligands on monosynaptic gamma-aminobutyric acid (GABA)A-mediated inhibitory postsynaptic potentials (IPSPs) and on responses to exogenously applied GABA were studied using intracellular recordings from CA3 pyramidal cells of rat hippocampal slices taken at different postnatal stages [postnatal day 4 (P4)-P35)]. 2. The effects of midazolam, a BZ1 and BZ2 receptor agonist, were tested on the monosynaptic IPSPs at different stages. Monosynaptic, bicuculline-sensitive IPSPs were evoked by hilar stimulation in presence of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) antagonists [6-cyano-7-nitroquinoxaline-2,3-dione (10 microM) and D(-)2-amino-5-phosphonopentanoic acid (50 microM)]. Midazolam at 300 nM maximally increased the duration and amplitude of monosynaptic GABAA-mediated IPSPs in neurons from pups (P4-P6, n = 6) and young (P7-P12, n = 8) and adult (P25-P35, n = 9) rats. All the effects of midazolam on IPSPs were reversed by the antagonist Ro 15-1788 (10 microM). 3. The effect of midazolam was also tested on the response to exogenously applied GABA (5 mM) in the presence of tetrodotoxine [TTX (1 microM)]. In neurons from young rats (n = 9), midazolam (1 nM-1 microM) did not change the responses to exogenously applied GABA, whereas in adult rats (n = 8) midazolam maximally increased GABA currents at 30 nM. 4. The effect of zolpidem, a BZ1 receptor agonist, was tested on monosynaptic IPSPs and GABA currents at different stages. Zolpidem (10 nM-1 microM) was inactive in cells from young rats (n = 12). In neurons from adult rats, zolpidem maximally increased the duration and amplitude of the monosynaptic IPSPs at 300 nM (n = 5) and the amplitude of GABA current at 30-100 nM (n = 5). 5. Methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) (300 nM), an inverse agonist of BZ1 and BZ2 receptors, decreased the amplitude and duration of monosynaptic IPSPs in neurons from pups (n = 3) and young (n = 4) and adult (n = 5) rats. In all cases, full recovery was obtained after exposure to R0 15-1788 (10 microM). DMCM (300 nM-10 microM) failed to reduce GABA responses in cells from young (n = 3) or adult (n = 7) rats. 6. Results indicate that the regulation by benzodiazepine of GABAA-mediated IPSPs varies with the developmental stage.(ABSTRACT TRUNCATED AT 400 WORDS)


1986 ◽  
Vol 56 (2) ◽  
pp. 409-423 ◽  
Author(s):  
A. Konnerth ◽  
U. Heinemann ◽  
Y. Yaari

Epileptiform activity induced in rat hippocampal slices by lowering extracellular Ca2+ concentration ([Ca2+]o) was studied with extracellular and intracellular recordings. Perfusing the slices with low Ca2+ (less than or equal to 0.2 mM) or EGTA-containing solutions blocked the synaptic responses of hippocampal pyramidal cells (HPCs). Despite the block, spontaneous paroxysms, termed seizurelike events (SLEs), appeared in the CA1 area and then recurred regularly at a stable frequency. Transient hypoxia accelerated their development and increased their frequency. When [Ca2+]o was raised in a stepwise manner, the SLEs disappeared at 0.3 mM. With extracellular recording from the CA1 stratum pyramidale, a SLE was characterized by a large negative shift in the field potential, which lasted for several seconds. During this period a large population of CA1 neurons discharged intensely and often in synchrony, as concluded from the frequent appearance of population spikes. Synchronization, however, was not a necessary precursor for the development of paroxysmal activity, but seemed to be the end result of massive neuronal excitation. The cellular counterpart of a SLE, as revealed by intracellular recording from HPCs in the discharge zone of the paroxysms, was a long-lasting depolarization shift (LDS) of up to 20 mV. This was accompanied by accelerated firing of the neuron. A prolonged after-hyperpolarization succeeded each LDS and arrested cell firing. Brief (approximately 50 ms) bursts were commonly observed before LDS onset. Single electrical stimuli applied focally to the stratum pyramidale or alveus evoked paroxysms identical to the spontaneous SLEs, provided they surpassed a critical threshold intensity. Subthreshold stimuli elicited only small local responses, whereas stimuli of varied suprathreshold intensities evoked the same maximal SLEs. Thus the buildup of a SLE is an all or nothing or a regenerative process, which mobilizes the majority, if not all, of the local neuronal population. Each SLE was followed by absolute and relative refractory periods during which focal stimulation was, respectively, ineffective and less effective in evoking a maximal SLE. In most slices the spontaneous SLEs commenced at a "focus" located in the CA1a subarea (near the subiculum). SLEs evoked by focal stimulation arose near the stimulating electrode. From their site of origin the paroxysmal discharges spread transversely through the entire CA1 area at a mean velocity of 1.74 mm/s. Consequently, the discharge zone of a SLE could encompass for several seconds the entire CA1 area.(ABSTRACT TRUNCATED AT 400 WORDS)


1988 ◽  
Vol 59 (1) ◽  
pp. 110-123 ◽  
Author(s):  
E. P. Christian ◽  
F. E. Dudek

1. Evidence for local excitatory synaptic connections in CA1 of the rat hippocampus was obtained by recording excitatory postsynaptic potentials (EPSPs) intracellularly from pyramidal cells during local microapplications of glutamate. 2. Experiments were performed in hippocampal slices cut parallel to (transverse slice) or perpendicular to (longitudinal slice) alvear fibers. In normal solutions, glutamate microdrops (10–20 mM, 10–20 micron diam) applied in CA1 within 400 micron of recorded cells sometimes increased the frequency of inhibitory postsynaptic potentials for 5–10 s in both transverse and longitudinal slices. Increases in EPSP frequency were also occasionally observed, but only in transverse slices. Tetrodotoxin (1 microgram/ml) blocked glutamate-induced increases in PSP frequency, thus indicating that they were not caused by subthreshold effects on presynaptic terminals. Increases in PSP frequency were interpreted to result from glutamate activation of hippocampal neurons with inhibitory and excitatory connections to recorded neurons. 3. In both slice orientations, local excitatory circuits were studied in more isolated conditions by surgically separating CA1 from CA3 (transverse slices) and by blocking GABAergic inhibitory synapses with picrotoxin (5–10 microM). Microdrops were systematically applied at 200 and 400 micron on each side of the recording site. Significant glutamate-induced increases in EPSP frequency were observed in neurons from both slice orientations to microdrops in at least one of the locations. This provided evidence that excitatory synapses are present in both transverse and longitudinal slices. 4. Substantial increases in EPSP frequency only occurred in neurons from longitudinal slices when glutamate was microapplied 200 micron or less from the recording site. In transverse slices, however, large increases in EPSP frequency were observed to glutamate microapplications at 200 or 400 micron. These data suggest that CA1 local excitatory connections project for longer distances in the transverse than in the longitudinal plane of section. 5. Increases in EPSP frequency, averaged across cells, did not differ significantly in the four microapplication sites in either transverse or longitudinal slices. Thus local excitation in CA1 does not appear to be asymmetrically arranged in the way suggested for CA3. 6. The densities of local excitatory circuits in CA1 versus CA3 were studied by quantitatively comparing glutamate-induced increases in EPSP frequency.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document