Directional Control of Planar Human Arm Movement

1997 ◽  
Vol 78 (6) ◽  
pp. 2985-2998 ◽  
Author(s):  
Gerald L. Gottlieb ◽  
Qilai Song ◽  
Gil L. Almeida ◽  
Di-An Hong ◽  
Daniel Corcos

Gottlieb, Gerald L., Qilai Song, Gil L. Almeida, Di-an Hong, and Daniel Corcos. Directional control of planar human arm movement. J. Neurophysiol. 78: 2985–2998, 1997. We examined the patterns of joint kinematics and torques in two kinds of sagittal plane reaching movements. One consisted of movements from a fixed initial position with the arm partially outstretched, to different targets, equidistant from the initial position and located according to the hours of a clock. The other series added movements from different initial positions and directions and >40–80 cm distances. Dynamic muscle torque was calculated by inverse dynamic equations with the gravitational components removed. In making movements in almost every direction, the dynamic components of the muscle torques at both the elbow and shoulder were related almost linearly to each other. Both were similarly shaped, biphasic, almost synchronous and symmetrical pulses. These findings are consistent with our previously reported observations, which we termed a linear synergy. The relative scaling of the two joint torques changes continuously and regularly with movement direction. This was confirmed by calculating a vector defined by the dynamic components of the shoulder and elbow torques. The vector rotates smoothly about an ellipse in intrinsic, joint torque space as the direction of hand motion rotates about a circle in extrinsic Cartesian space. This confirms a second implication of linear synergy that the scaling constant between the linearly related joint torques is directionally dependent. Multiple linear regression showed that the torque at each joint scales as a simple linear function of the angular displacement at both joints, in spite of the complex nonlinear dynamics of multijoint movement. The coefficients of this function are independent of the initial arm position and movement distance and are the same for all subjects. This is an unanticipated finding. We discuss these observations in terms of the hypothesis that voluntary, multiple degrees of freedom, rapid reaching movements may use rule-based, feed-forward control of dynamic joint torque. Rule-based control of joint torque with separate dynamic and static controllers is an alternative to models such as those based on the equilibrium point hypotheses that rely on a positionally based controller to produce both dynamic and static torque components. It is also an alternative to feed-forward models that directly solve the problems of inverse dynamics. Our experimental findings are not necessarily incompatible with any of the alternative models, but they describe new, additional findings for which we need to account. The rules are chosen by the nervous system according to features of the kinematic task to couple muscle contraction at the shoulder and elbow in a linear synergy. Speed and load control preserves the relative magnitudes of the dynamic torques while directional control is accomplished by modulating them in a differential manner. This control system operates in parallel with a positional control system that solves the problems of postural stability.

1999 ◽  
Vol 81 (5) ◽  
pp. 2582-2586 ◽  
Author(s):  
Kiisa C. Nishikawa ◽  
Sara T. Murray ◽  
Martha Flanders

Do arm postures vary with the speed of reaching? For reaching movements in one plane, the hand has been observed to follow a similar path regardless of speed. Recent work on the control of more complex reaching movements raises the question of whether a similar “speed invariance” also holds for the additional degrees of freedom. Therefore we examined human arm movements involving initial and final hand locations distributed throughout the three-dimensional (3D) workspace of the arm. Despite this added complexity, arm kinematics (summarized by the spatial orientation of the “plane of the arm” and the 3D curvature of the hand path) changed very little for movements performed over a wide range of speeds. If the total force (dynamic + quasistatic) had been optimized by the control system (e.g., as in a minimization of the change in joint torques or the change in muscular forces), the optimal solution would change with speed; slow movements would reflect the minimal antigravity torques, whereas fast movements would be more strongly influenced by dynamic factors. The speed-invariant postures observed in this study are instead consistent with a hypothesized optimization of only the dynamic forces.


2019 ◽  
Author(s):  
Nafiseh Ebrahimi

The study of humanoid character is of great interest of researchers in the field of robotics and biomechanics. The one might want to know the forces and torques required to move a limb from an initial position to the desired destination position. Inverse dynamics is a helpful method to compute the force and torques for an articulated body limb. It enables us to know the joint torques required to rotate a link between two positions. Our goal in this study was to control a human-like articulated manipulator for a specific task of path tracking. For this purpose, the human arm was modeled with a three-link planar manipulator activated by Hill muscle model. Applying a proportional controller, values of force and torques applied to the joints were calculated by inverse dynamics and then joints and muscle forces trajectories were computed and presented. To be more accurate to say, the kinematics of the muscle-joint space was formulated by which we defined the relationship between the muscle lengths and the geometry of the links and joints. Secondary, the kinematic of the links was introduced to calculate the position of the end-effector in terms of the geometry. Then, we considered the modeling of Hill muscle dynamics and after calculation of joint torques, finally, we applied them to the dynamics of the three-link manipulator obtained from the inverse dynamics to calculate the joint states, find and control the location of manipulator’s end-effector. The results show that the human arm model was successfully controlled to take the designated path of an ellipse precisely.


1996 ◽  
Vol 76 (5) ◽  
pp. 3196-3206 ◽  
Author(s):  
G. L. Gottlieb ◽  
Q. Song ◽  
D. A. Hong ◽  
D. M. Corcos

1. Eight subjects performed three series of pointing tasks with the unconstrained arm. Series one and two required subjects to move between two fixed targets as quickly as possible with different weights attached to the wrist. By specifying initial and final positions of the finger tip, the first series was performed by flexion of both shoulder and elbow and the second by shoulder flexion and elbow extension. The third series required flexion at both joints, and subjects were instructed to vary movement speed. We examined how variations in load or intended speed were associated with changes in the amount and timing of the electromyographic (EMG) activity and the net muscle torque production. 2. EMG and torque patterns at the individual joints varied with load and speed according to most of the same rules we have described for single-joint movements. 1) Movements were produced by biphasic torque pulses and biphasic or triphasic EMG bursts at both joints. 2) The accelerating impulse was proportional to the load when the subject moved “as fast and accurately as possible” or to speed if that was intentionally varied. 3) The area of the EMG bursts of agonist muscles varied with the impulse. 4) The rates of rise of the net muscle torques and of the EMG bursts were proportional to intended speed and insensitive to inertial load. 5) The areas of the antagonist muscle EMG bursts were proportional to intended movement speed but showed less dependence on load, which is unlike what is observed during single-joint movements. 3. Comparisons across joints showed that the impulse produced at the shoulder was proportional to that produced at the elbow as both varied together with load and speed. The torques at the two joints varied in close synchrony, achieving maxima and going through zero almost simultaneously. 4. We hypothesize that “coordination” of the elbow and shoulder is by the planning and generation of synchronized, biphasic muscle torque pulses that remain in near linear proportionality to each other throughout most of the movement. This linear synergy produces movements with the commonly observed kinematic properties and that are preserved over changes in speed and load.


2009 ◽  
Vol 09 (04) ◽  
pp. 449-479 ◽  
Author(s):  
L. LAN ◽  
K. Y. ZHU ◽  
C. Y. WEN

The existing functional electrical stimulation (FES) techniques often required to solve the complex "inverse dynamic problem" to calculate the muscle torques for moving along a desired trajectory. According to the threshold control theory of voluntary motor control, a bio-mimetic threshold control strategy for the FES controller is designed and tested in the human arm movement. The arm is modeled as three segments connected by two hinges joints. The movement is driven by seven muscles and limited in the horizontal plane. All muscles are described by a modified Hill-type muscle model. Simulation results suggest that the threshold FES control system can realize point to point movement and can approximately follow the desired traces in presence of feedback delays up to 20 ms. The movement can also maintain stability under external perturbation or external load. The control system can be employed in clinical application because of the following advantages: (1) The control strategy includes some mature control techniques which had been realized in hardware. (2) Only sophisticated sensors of goniometer and the surface electrodes are needed to provide feedbacks and muscle stimulation. (3) The performance of the control system will not be critically influenced by the slight change of musculo-tendon parameters and feedback delays, and even the parameters of controller are fixed.


2013 ◽  
Vol 110 (6) ◽  
pp. 1370-1384 ◽  
Author(s):  
Pascale Pigeon ◽  
Paul DiZio ◽  
James R. Lackner

We have previously shown that the Coriolis torques that result when an arm movement is performed during torso rotation do not affect movement trajectory. Our purpose in the present study was to examine whether torso motion-induced Coriolis and other interaction torques are counteracted during a turn and reach (T&R) movement when the effective mass of the hand is augmented, and whether the dominant arm has an advantage in coordinating intersegmental dynamics as predicted by the dynamic dominance hypothesis (Sainburg RL. Exp Brain Res 142: 241–258, 2002). Subjects made slow and fast T&R movements in the dark to just extinguished targets with either arm, while holding or not holding a 454-g object. Movement endpoints were equally accurate at both speeds, with either hand, and in both weight conditions, but subjects tended to angularly undershoot and produce more variable endpoints for targets requiring greater torso rotation. There were no changes in endpoint accuracy or trajectory deviation over repeated movements. The dominant right arm was more stable in its control of trajectory direction across targets, whereas the nondominant left arm had an improved ability to stop accurately on the target for higher levels of interaction torques. The trajectories to more eccentric targets were straighter when performed at higher speeds but slightly more deviated when subjects held the weight. Subjects did not slow their torso velocity or change the timing of the arm and torso velocities when holding the weight, although there was a slight decrease in their hand velocity relative to the torso. The delay between the onsets of torso and finger movements was almost twice as large for the right arm than the left, suggesting the right arm was better able to account for torso rotation in the arm movement. Holding the weight increased the peak Coriolis torque by 40% at the shoulder and 45% at the elbow and, for the most eccentric target, increased the peak net torque by 12% at the shoulder and 34% at the elbow. In accordance with Sainburg's dynamic dominance hypothesis, the right arm exhibited an advantage for coordinating intersegmental dynamics, showing a more stable finger velocity in relation to the torso across targets, decreasing error variability with movement speed, and more synchronized peaks of finger relative and torso angular velocities in conditions with greater joint torque requirements. The arm used had little effect on the movement path and the magnitude of the joint torques in any of the conditions. These results indicate that compensations for forthcoming Coriolis torque variations take into account the dynamic properties of the body and of external objects, as well as the planned velocities of the torso and arm.


2009 ◽  
Vol 6 (2) ◽  
pp. 175-191 ◽  
Author(s):  
Joel C. Perry ◽  
Janet M. Powell ◽  
Jacob Rosen

The integration of human and robot into a single system offers remarkable opportunities for a new generation of assistive technology. Despite the recent prominence of upper limb exoskeletons in assistive applications, the human arm kinematics and dynamics are usually described in single or multiple arm movements that are not associated with any concrete activity of daily living (ADL). Moreover, the design of an exoskeleton, which is physically linked to the human body, must have a workspace that matches as close as possible with the workspace of the human body, while at the same time avoid singular configurations of the exoskeleton within the human workspace. The aims of the research reported in this manuscript are (1) to study the kinematics and the dynamics of the human arm during daily activities in a free and unconstrained environment, (2) to study the manipulability (isotropy) of a 7-degree-of-freedom (DOF)-powered exoskeleton arm given the kinematics and the dynamics of the human arm in ADLs. Kinematic data of the upper limb were acquired with a motion capture system while performing 24 daily activities from six subjects. Utilising a 7-DOF model of the human arm, the equations of motion were used to calculate joint torques from measured kinematics. In addition, the exoskeleton isotropy was calculated and mapped with respect to the spacial distribution of the human arm configurations during the 24 daily activities. The results indicate that the kinematic joint distributions representing all 24 actions appear normally distributed except for elbow flexion–extension with the emergence of three modal centres. Velocity and acceleration components of joint torque distributions were normally distributed about 0 Nm, whereas gravitational component distributions varied with joint. Additionally, velocity effects were found to contribute only 1/100th of the total joint torque, whereas acceleration components contribute 1/10th of the total torque at the shoulder and elbow, and nearly half of the total torque at the wrist. These results suggest that the majority of human arm joint torques are devoted to supporting the human arm position in space while compensating gravitational loads whereas a minor portion of the joint torques is dedicated to arm motion itself. A unique axial orientation at the base of the exoskeleton allowed the singular configuration of the shoulder joint to be moved towards the boundary of the human arm workspace while supporting 95% of the arm's workspace. At the same time, this orientation allowed the best exoskeleton manipulability at the most commonly used human arm configuration during ADLs. One of the potential implications of these results might be the need to compensate gravitational load during robotic-assistive rehabilitation treatment. Moreover, results of a manipulability analysis of the exoskeleton system indicate that the singular configuration of the exoskeleton system may be moved out of the human arm physiological workspace while maximising the overlap between the human arm and the exoskeleton workspaces. The collected database along with kinematic and dynamic analyses may provide a fundamental basis towards the development of assistive technologies for the human arm.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Davide Piovesan ◽  
Alberto Pierobon ◽  
Paul DiZio ◽  
James R. Lackner

A common problem in the analyses of upper limb unfettered reaching movements is the estimation of joint torques using inverse dynamics. The inaccuracy in the estimation of joint torques can be caused by the inaccuracy in the acquisition of kinematic variables, body segment parameters (BSPs), and approximation in the biomechanical models. The effect of uncertainty in the estimation of body segment parameters can be especially important in the analysis of movements with high acceleration. A sensitivity analysis was performed to assess the relevance of different sources of inaccuracy in inverse dynamics analysis of a planar arm movement. Eight regression models and one water immersion method for the estimation of BSPs were used to quantify the influence of inertial models on the calculation of joint torques during numerical analysis of unfettered forward arm reaching movements. Thirteen subjects performed 72 forward planar reaches between two targets located on the horizontal plane and aligned with the median plane. Using a planar, double link model for the arm with a floating shoulder, we calculated the normalized joint torque peak and a normalized root mean square (rms) of torque at the shoulder and elbow joints. Statistical analyses quantified the influence of different BSP models on the kinetic variable variance for given uncertainty on the estimation of joint kinematics and biomechanical modeling errors. Our analysis revealed that the choice of BSP estimation method had a particular influence on the normalized rms of joint torques. Moreover, the normalization of kinetic variables to BSPs for a comparison among subjects showed that the interaction between the BSP estimation method and the subject specific somatotype and movement kinematics was a significant source of variance in the kinetic variables. The normalized joint torque peak and the normalized root mean square of joint torque represented valuable parameters to compare the effect of BSP estimation methods on the variance in the population of kinetic variables calculated across a group of subjects with different body types. We found that the variance of the arm segment parameter estimation had more influence on the calculated joint torques than the variance of the kinematics variables. This is due to the low moments of inertia of the upper limb, especially when compared with the leg. Therefore, the results of the inverse dynamics of arm movements are influenced by the choice of BSP estimation method to a greater extent than the results of gait analysis.


Biomechanics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 102-117
Author(s):  
Nasser Rezzoug ◽  
Vincent Hernandez ◽  
Philippe Gorce

A force capacity evaluation for a given posture may provide better understanding of human motor abilities for applications in sport sciences, rehabilitation and ergonomics. From data on posture and maximum isometric joint torques, the upper-limb force feasible set of the hand was predicted by four models called force ellipsoid, scaled force ellipsoid, force polytope and scaled force polytope, which were compared with a measured force polytope. The volume, shape and force prediction errors were assessed. The scaled ellipsoid underestimated the maximal mean force, and the scaled polytope overestimated it. The scaled force ellipsoid underestimated the volume of the measured force distribution, whereas that of the scaled polytope was not significantly different from the measured distribution but exhibited larger variability. All the models characterized well the elongated shape of the measured force distribution. The angles between the main axes of the modelled ellipsoids and polytopes and that of the measured polytope were compared. The values ranged from 7.3° to 14.3°. Over the entire surface of the force ellipsoid, 39.7% of the points had prediction errors less than 50 N; 33.6% had errors between 50 and 100 N; and 26.8% had errors greater than 100N. For the force polytope, the percentages were 56.2%, 28.3% and 15.4%, respectively.


Sign in / Sign up

Export Citation Format

Share Document