scholarly journals Isotropy of an Upper Limb Exoskeleton and the Kinematics and Dynamics of the Human Arm

2009 ◽  
Vol 6 (2) ◽  
pp. 175-191 ◽  
Author(s):  
Joel C. Perry ◽  
Janet M. Powell ◽  
Jacob Rosen

The integration of human and robot into a single system offers remarkable opportunities for a new generation of assistive technology. Despite the recent prominence of upper limb exoskeletons in assistive applications, the human arm kinematics and dynamics are usually described in single or multiple arm movements that are not associated with any concrete activity of daily living (ADL). Moreover, the design of an exoskeleton, which is physically linked to the human body, must have a workspace that matches as close as possible with the workspace of the human body, while at the same time avoid singular configurations of the exoskeleton within the human workspace. The aims of the research reported in this manuscript are (1) to study the kinematics and the dynamics of the human arm during daily activities in a free and unconstrained environment, (2) to study the manipulability (isotropy) of a 7-degree-of-freedom (DOF)-powered exoskeleton arm given the kinematics and the dynamics of the human arm in ADLs. Kinematic data of the upper limb were acquired with a motion capture system while performing 24 daily activities from six subjects. Utilising a 7-DOF model of the human arm, the equations of motion were used to calculate joint torques from measured kinematics. In addition, the exoskeleton isotropy was calculated and mapped with respect to the spacial distribution of the human arm configurations during the 24 daily activities. The results indicate that the kinematic joint distributions representing all 24 actions appear normally distributed except for elbow flexion–extension with the emergence of three modal centres. Velocity and acceleration components of joint torque distributions were normally distributed about 0 Nm, whereas gravitational component distributions varied with joint. Additionally, velocity effects were found to contribute only 1/100th of the total joint torque, whereas acceleration components contribute 1/10th of the total torque at the shoulder and elbow, and nearly half of the total torque at the wrist. These results suggest that the majority of human arm joint torques are devoted to supporting the human arm position in space while compensating gravitational loads whereas a minor portion of the joint torques is dedicated to arm motion itself. A unique axial orientation at the base of the exoskeleton allowed the singular configuration of the shoulder joint to be moved towards the boundary of the human arm workspace while supporting 95% of the arm's workspace. At the same time, this orientation allowed the best exoskeleton manipulability at the most commonly used human arm configuration during ADLs. One of the potential implications of these results might be the need to compensate gravitational load during robotic-assistive rehabilitation treatment. Moreover, results of a manipulability analysis of the exoskeleton system indicate that the singular configuration of the exoskeleton system may be moved out of the human arm physiological workspace while maximising the overlap between the human arm and the exoskeleton workspaces. The collected database along with kinematic and dynamic analyses may provide a fundamental basis towards the development of assistive technologies for the human arm.

Biomechanics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 102-117
Author(s):  
Nasser Rezzoug ◽  
Vincent Hernandez ◽  
Philippe Gorce

A force capacity evaluation for a given posture may provide better understanding of human motor abilities for applications in sport sciences, rehabilitation and ergonomics. From data on posture and maximum isometric joint torques, the upper-limb force feasible set of the hand was predicted by four models called force ellipsoid, scaled force ellipsoid, force polytope and scaled force polytope, which were compared with a measured force polytope. The volume, shape and force prediction errors were assessed. The scaled ellipsoid underestimated the maximal mean force, and the scaled polytope overestimated it. The scaled force ellipsoid underestimated the volume of the measured force distribution, whereas that of the scaled polytope was not significantly different from the measured distribution but exhibited larger variability. All the models characterized well the elongated shape of the measured force distribution. The angles between the main axes of the modelled ellipsoids and polytopes and that of the measured polytope were compared. The values ranged from 7.3° to 14.3°. Over the entire surface of the force ellipsoid, 39.7% of the points had prediction errors less than 50 N; 33.6% had errors between 50 and 100 N; and 26.8% had errors greater than 100N. For the force polytope, the percentages were 56.2%, 28.3% and 15.4%, respectively.


2020 ◽  
Vol 10 (6) ◽  
pp. 2101 ◽  
Author(s):  
Zaixiang Pang ◽  
Tongyu Wang ◽  
Zhanli Wang ◽  
Junzhi Yu ◽  
Zhongbo Sun ◽  
...  

Nowadays, patients with mild and moderate upper limb paralysis caused by cerebral apoplexy are uncomfortable with autonomous rehabilitation. In this paper, according to the “rope + toothed belt” generalized rope drive design scheme, we design a utility model for a wearable upper limb rehabilitation robot with a tension mechanism. Owing to study of the human upper extremity anatomy, movement mechanisms, and the ranges of motion, it can determine the range of motion angles of the human arm joints, and design the shoulder joint, elbow joint, and wrist joint separately under the principle of ensuring the minimum driving torque. Then, the kinematics, workspace and dynamics analysis of each structure are performed. Finally, the control system of the rehabilitation robot is designed. The experimental results show that the structure is convenient to wear on the human body, and the robot’s freedom of movement matches well with the freedom of movement of the human body. It can effectively support and traction the front and rear arms of the affected limb, and accurately transmit the applied traction force to the upper limb of the joints. The rationality of the wearable upper limb rehabilitation robot design is verified, which can help patients achieve rehabilitation training and provide an effective rehabilitation equipment for patients with hemiplegia caused by stroke.


1997 ◽  
Vol 78 (6) ◽  
pp. 2985-2998 ◽  
Author(s):  
Gerald L. Gottlieb ◽  
Qilai Song ◽  
Gil L. Almeida ◽  
Di-An Hong ◽  
Daniel Corcos

Gottlieb, Gerald L., Qilai Song, Gil L. Almeida, Di-an Hong, and Daniel Corcos. Directional control of planar human arm movement. J. Neurophysiol. 78: 2985–2998, 1997. We examined the patterns of joint kinematics and torques in two kinds of sagittal plane reaching movements. One consisted of movements from a fixed initial position with the arm partially outstretched, to different targets, equidistant from the initial position and located according to the hours of a clock. The other series added movements from different initial positions and directions and >40–80 cm distances. Dynamic muscle torque was calculated by inverse dynamic equations with the gravitational components removed. In making movements in almost every direction, the dynamic components of the muscle torques at both the elbow and shoulder were related almost linearly to each other. Both were similarly shaped, biphasic, almost synchronous and symmetrical pulses. These findings are consistent with our previously reported observations, which we termed a linear synergy. The relative scaling of the two joint torques changes continuously and regularly with movement direction. This was confirmed by calculating a vector defined by the dynamic components of the shoulder and elbow torques. The vector rotates smoothly about an ellipse in intrinsic, joint torque space as the direction of hand motion rotates about a circle in extrinsic Cartesian space. This confirms a second implication of linear synergy that the scaling constant between the linearly related joint torques is directionally dependent. Multiple linear regression showed that the torque at each joint scales as a simple linear function of the angular displacement at both joints, in spite of the complex nonlinear dynamics of multijoint movement. The coefficients of this function are independent of the initial arm position and movement distance and are the same for all subjects. This is an unanticipated finding. We discuss these observations in terms of the hypothesis that voluntary, multiple degrees of freedom, rapid reaching movements may use rule-based, feed-forward control of dynamic joint torque. Rule-based control of joint torque with separate dynamic and static controllers is an alternative to models such as those based on the equilibrium point hypotheses that rely on a positionally based controller to produce both dynamic and static torque components. It is also an alternative to feed-forward models that directly solve the problems of inverse dynamics. Our experimental findings are not necessarily incompatible with any of the alternative models, but they describe new, additional findings for which we need to account. The rules are chosen by the nervous system according to features of the kinematic task to couple muscle contraction at the shoulder and elbow in a linear synergy. Speed and load control preserves the relative magnitudes of the dynamic torques while directional control is accomplished by modulating them in a differential manner. This control system operates in parallel with a positional control system that solves the problems of postural stability.


2005 ◽  
Vol 94 (5) ◽  
pp. 3046-3057 ◽  
Author(s):  
Jonathan Shemmell ◽  
Matthew Forner ◽  
James R. Tresilian ◽  
Stephan Riek ◽  
Benjamin K. Barry ◽  
...  

In this study we attempted to identify the principles that govern the changes in neural control that occur during repeated performance of a multiarticular coordination task. Eight participants produced isometric flexion/extension and pronation/supination torques at the radiohumeral joint, either in isolation (e.g., flexion) or in combination (e.g., flexion–supination), to acquire targets presented by a visual display. A cursor superimposed on the display provided feedback of the applied torques. During pre- and postpractice tests, the participants acquired targets in eight directions located either 3.6 cm (20% maximal voluntary contraction [MVC]) or 7.2 cm (40% MVC) from a neutral cursor position. On each of five consecutive days of practice the participants acquired targets located 5.4 cm (30% MVC) from the neutral position. EMG was recorded from eight muscles contributing to torque production about the radiohumeral joint during the pre- and posttests. Target-acquisition time decreased significantly with practice in most target directions and at both target torque levels. These performance improvements were primarily associated with increases in the peak rate of torque development after practice. At a muscular level, these changes were brought about by increases in the rates of recruitment of all agonist muscles. The spatiotemporal organization of muscle synergies was not significantly altered after practice. The observed adaptations appear to lead to performances that are generalizable to actions that require both greater and smaller joint torques than that practiced, and may be successfully recalled after a substantial period without practice. These results suggest that tasks in which performance is improved by increasing the rate of muscle activation, and thus the rate of joint torque development, may benefit in terms of the extent to which acquired levels of performance are maintained over time.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 69
Author(s):  
Taisei Mori ◽  
Yohei Ogino ◽  
Akihiro Matsuda ◽  
Yumiko Funabashi

In this paper, 3-axial knee joint torques given by compression sports tights were performed by numerical simulations using 3-dimensional computer graphics of a human model. Running motions of the human model were represented as the 3-dimensional computer graphics, and the running motions were determined by the motion capturing system of human subjects. Strain distribution on the surface of the 3-dimentional computer graphics of the human model was applied to the boundary conditions of the numerical simulations. An anisotropic hyperelastic model considering stress softening of fabric materials was implemented to reproduce the mechanical characteristics of the compression sports tights. Based on the strain-time relationships, knee joint torques in 3-dimentional coordinates given by the compression sports tights were calculated. As a result, the three types of knee joint torque generated by the compression sports tights in running motions were calculated. From the calculated results, the maximum value of flexion/extension, varus/valgus, and internal/external knee joint torques were given as 2.52, 0.59, and 0.31 Nm, respectively. The effect of compression sports tights on the knee joint was investigated.


2014 ◽  
Vol 44 (4) ◽  
pp. 3-14 ◽  
Author(s):  
D. Chakarov ◽  
I. Veneva ◽  
M. Tsveov ◽  
T. Tiankov

Abstract In the work presented in this paper the conceptual design and actuation of one new exoskeleton of the upper limb is presented. The device is designed for application where both motion tracking and force feedback are required, such as human interaction with virtual environment or rehabilitation tasks. The choice is presented of mechanical structure kinematical equivalent to the structure of the human arm. An actuation system is selected based on braided pneumatic muscle actuators. Antagonistic drive system for each joint is shown, using pulley and cable transmissions. Force/displacement diagrams are presented of two antagonistic acting muscles. Kinematics and dynamic estimations are performed of the system exoskeleton and upper limb. Selected parameters ensure in the antagonistic scheme joint torque regulation and human arm range of motion.


Sign in / Sign up

Export Citation Format

Share Document