Inactivation of Voltage-Activated Na+ Currents Contributes to Different Adaptation Properties of Paired Mechanosensory Neurons

2001 ◽  
Vol 85 (4) ◽  
pp. 1595-1602 ◽  
Author(s):  
Päivi H. Torkkeli ◽  
Shin-Ichi Sekizawa ◽  
Andrew S. French

Voltage-activated sodium current ( I Na) is primarily responsible for the leading edge of the action potential in many neurons. While I Na generally activates rapidly when a neuron is depolarized, its inactivation properties differ significantly between different neurons and even within one neuron, where I Na often has slowly and rapidly inactivating components. I Nainactivation has been suggested to regulate action potential firing frequency in some cells, but no clear picture of this relationship has emerged. We studied I Na in both members of the paired mechanosensory neurons of a spider slit-sense organ, where one neuron adapts rapidly (type A) and the other slowly (type B) in response to a step depolarization. In both neuron types I Na activated and inactivated with single time constants of 2–3 ms and 5–10 ms, respectively, varying with the stimulus intensity. However, there was a clear difference in the steady-state inactivation properties of the two neuron types, with the half-maximal inactivation ( V 50) being −40.1 mV in type A neurons and −58.1 mV in type B neurons. Therefore I Na inactivated closer to the resting potential in the more slowly adapting neurons. I Na also recovered from inactivation significantly faster in type B than type A neurons, and the recovery was dependent on conditioning voltage. These results suggest that while the rate of I Na inactivation is not responsible for the difference in the adaptation behavior of these two neuron types, the rate of recovery from inactivation may play a major role. Inactivation at lower potentials could therefore be crucial for more rapid recovery.

2006 ◽  
Vol 95 (5) ◽  
pp. 3060-3072 ◽  
Author(s):  
K. T. Blackwell

In Hermissenda crassicornis, the memory of light associated with turbulence is stored as changes in intrinsic and synaptic currents in both type A and type B photoreceptors. These photoreceptor types exhibit qualitatively different responses to light and current injection, and these differences shape the spatiotemporal firing patterns that control behavior. Thus the objective of the study was to identify the mechanisms underlying these differences. The approach was to develop a type B model that reproduced characteristics of type B photoreceptors recorded in vitro, and then to create a type A model by modifying a select number of ionic currents. Comparison of type A models with characteristics of type A photoreceptors recorded in vitro revealed that type A and type B photoreceptors have five main differences, three that have been characterized experimentally and two that constitute hypotheses to be tested with experiments in the future. The three differences between type A and type B photoreceptors previously characterized include the inward rectifier current, the fast sodium current, and conductance of calcium-dependent and transient potassium channels. Two additional changes were required to produce a type A photoreceptor model. The very fast firing frequency observed during the first second after light onset required a faster time constant of activation of the delayed rectifier. The fast spike adaptation required a fast, noninactivating calcium-dependent potassium current. Because these differences between type A and type B photoreceptors have not been confirmed in comparative experiments, they constitute hypotheses to be tested with future experiments.


2015 ◽  
Vol 114 (2) ◽  
pp. 1146-1157 ◽  
Author(s):  
V. Carmean ◽  
M. A. Yonkers ◽  
M. B. Tellez ◽  
J. R. Willer ◽  
G. B. Willer ◽  
...  

The study of touch-evoked behavior allows investigation of both the cells and circuits that generate a response to tactile stimulation. We investigate a touch-insensitive zebrafish mutant, macho (maco), previously shown to have reduced sodium current amplitude and lack of action potential firing in sensory neurons. In the genomes of mutant but not wild-type embryos, we identify a mutation in the pigk gene. The encoded protein, PigK, functions in attachment of glycophosphatidylinositol anchors to precursor proteins. In wild-type embryos, pigk mRNA is present at times when mutant embryos display behavioral phenotypes. Consistent with the predicted loss of function induced by the mutation, knock-down of PigK phenocopies maco touch insensitivity and leads to reduced sodium current (INa) amplitudes in sensory neurons. We further test whether the genetic defect in pigk underlies the maco phenotype by overexpressing wild-type pigk in mutant embryos. We find that ubiquitous expression of wild-type pigk rescues the touch response in maco mutants. In addition, for maco mutants, expression of wild-type pigk restricted to sensory neurons rescues sodium current amplitudes and action potential firing in sensory neurons. However, expression of wild-type pigk limited to sensory cells of mutant embryos does not allow rescue of the behavioral touch response. Our results demonstrate an essential role for pigk in generation of the touch response beyond that required for maintenance of proper INa density and action potential firing in sensory neurons.


1996 ◽  
Vol 271 (3) ◽  
pp. H1151-H1161 ◽  
Author(s):  
A. Benardeau ◽  
S. N. Hatem ◽  
C. Rucker-Martin ◽  
B. Le Grand ◽  
L. Mace ◽  
...  

The Ca2+ dye indo 1 was used to record internal Ca2+ (Cai) transients in order to investigate the role of the Na+/Ca2+ exchange current (INa/Ca) in whole cell patch-clamped human atrial myocytes After the activation of the L-type Ca2+ current by test pulses (20 ms) at +20 mV, a tail current (I(tail)) was activated at a holding potential of -80 mV with a density of -1.29 +/- 0.06 pA/pF. The time course of I(tail) followed that of Cai transients I(tail) was suppressed by dialyzing cells with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, applying 5 mM caffeine, or substituting external Na+ with Li+, indicating that this current was mainly generated by INa/Ca. Two types of action potential were recorded: type A, which is characterized by a narrow early plateau followed by a late low plateau phase, and type B, which is characterized by a small initial peak followed by a prolonged high plateau phase. Type B action potentials were found in larger cells than type A action potentials (membrane capacitance 81.8 +/- 4.5 and 122.4 +/- 7.0 pF in types A and B, respectively, P < 0.001). Substitution of external Na+ with Li+ shortened the late plateau of the type A action potential and the prolonged plateau of the type B action potential. Suppression of Cai transients by caffeine shortens the late part of both types of action potentials, whereas its lengthening effect on the initial phase of action potentials can result from several different mechanisms. The beat-to-beat dependent relationship between Cai transients and action potentials could be mediated by Ina/Ca- Delayed afterdepolarizations were present in a significant proportion of atrial myocytes in our experimental conditions. They were reversibly suppressed by Li+ substitution for Na+, suggesting that they are generated by INa/Ca. We conclude that INa/Ca plays a major role in the development of action potentials and delayed afterdepolarizations in isolated human atrial myocytes.


2012 ◽  
Vol 107 (6) ◽  
pp. 1718-1730 ◽  
Author(s):  
Adi Cymerblit-Sabba ◽  
Yitzhak Schiller

The prevailing view of epileptic seizures is that they are caused by increased hypersynchronous activity in the cortical network. However, this view is based mostly on electroencephalography (EEG) recordings that do not directly monitor neuronal synchronization of action potential firing. In this study, we used multielectrode single-unit recordings from the hippocampus to investigate firing of individual CA1 neurons and directly monitor synchronization of action potential firing between neurons during the different ictal phases of chemoconvulsant-induced epileptic seizures in vivo. During the early phase of seizures manifesting as low-amplitude rhythmic β-electrocorticography (ECoG) activity, the firing frequency of most neurons markedly increased. To our surprise, the average overall neuronal synchronization as measured by the cross-correlation function was reduced compared with control conditions with ∼60% of neuronal pairs showing no significant correlated firing. However, correlated firing was not uniform and a minority of neuronal pairs showed a high degree of correlated firing. Moreover, during the early phase of seizures, correlated firing between 9.8 ± 5.1% of all stably recorded pairs increased compared with control conditions. As seizures progressed and high-frequency ECoG polyspikes developed, the firing frequency of neurons further increased and enhanced correlated firing was observed between virtually all neuronal pairs. These findings indicated that epileptic seizures represented a hyperactive state with widespread increase in action potential firing. Hypersynchrony also characterized seizures. However, it initially developed in a small subset of neurons and gradually spread to involve the entire cortical network only in the later more intense ictal phases.


2011 ◽  
Vol 106 (4) ◽  
pp. 2045-2056 ◽  
Author(s):  
Hyun-jung Cho ◽  
John B. Furness ◽  
Ernest A. Jennings

Hyperpolarization-activated inward currents ( Ih) contribute to neuronal excitability in sensory neurons. Four subtypes of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate Ih, with different activation kinetics and cAMP sensitivities. The aim of the present study was to examine the postnatal development of Ih and HCN channel subunits in trigeminal ganglion (TG) neurons. Ih was investigated in acutely dissociated TG neurons from rats aged between postnatal day (P)1 and P35 with whole cell patch-clamp electrophysiology. In voltage-clamp studies, Ih was activated by a series of hyperpolarizing voltage steps from −40 mV to −120 mV in −10-mV increments. Tail currents from a common voltage step (−100 mV) were used to determine Ih voltage dependence. Ih activation was faster in older rats and occurred at more depolarized potentials; the half-maximal activation voltage ( V1/2) changed from −89.4 mV (P1) to −81.6 mV (P35). In current-clamp studies, blocking Ih with ZD7288 caused membrane hyperpolarization and increases in action potential half-duration at all postnatal ages examined. ZD7288 also reduced the action potential firing frequency in multiple-firing neurons. Western blot analysis of the TG detected immunoreactive bands corresponding to all HCN subtypes. HCN1 and HCN2 band density increased with postnatal age, whereas the low-intensity HCN3 and moderate-intensity HCN4 bands were not changed. This study suggests that functional Ih are activated in rat trigeminal sensory neurons from P1 during postnatal development, have an increasing role with age, and modify neuronal excitability.


2018 ◽  
Vol 596 (3) ◽  
pp. 423-443 ◽  
Author(s):  
Hui Hong ◽  
Ting Lu ◽  
Xiaoyu Wang ◽  
Yuan Wang ◽  
Jason Tait Sanchez

2015 ◽  
Vol 113 (1) ◽  
pp. 264-276 ◽  
Author(s):  
Frances L. Meredith ◽  
Katherine J. Rennie

We developed a rodent crista slice to investigate regional variations in electrophysiological properties of vestibular afferent terminals. Thin transverse slices of the gerbil crista ampullaris were made and electrical properties of calyx terminals in central zones (CZ) and peripheral zones (PZ) compared with whole cell patch clamp. Spontaneous action potential firing was observed in 25% of current-clamp recordings and was either regular or irregular in both zones. Firing was abolished when extracellular choline replaced Na+ but persisted when hair cell mechanotransduction channels or calyx AMPA receptors were blocked. This suggests that ion channels intrinsic to the calyx can generate spontaneous firing. In response to depolarizing voltage steps, outward K+ currents were observed at potentials above −60 mV. K+ currents in PZ calyces showed significantly more inactivation than currents in CZ calyces. Underlying K+ channel populations contributing to these differences were investigated. The KCNQ channel blocker XE991 dihydrochloride blocked a slowly activating, sustained outward current in both PZ and CZ calyces, indicating the presence of KCNQ channels. Mean reduction was greatest in PZ calyces. XE991 also reduced action potential firing frequency in CZ and PZ calyces and broadened mean action potential width. The K+ channel blocker 4-aminopyridine (10–50 μM) blocked rapidly activating, moderately inactivating currents that were more prevalent in PZ calyces. α-Dendrotoxin, a selective blocker of KV1 channels, reduced outward currents in CZ calyces but not in PZ calyces. Regional variations in K+ conductances may contribute to different firing responses in calyx afferents.


1989 ◽  
Vol 62 (6) ◽  
pp. 1213-1224 ◽  
Author(s):  
G. G. Haddad ◽  
P. A. Getting

1. A brain stem slice preparation and intracellular techniques were used to examine the cellular properties of neurons within the ventral and ventrolateral region of the nucleus tractus solitarius (v-NTS) in adult and neonatal (3-12 days old) rats. These neurons are believed to be involved in the control of respiratory function. 2. On the basis of their active and passive electrophysiologic properties, cells in the v-NTS of adult rats were categorized into type A and type B neurons. Type A neurons fired spontaneously with rates ranging from 0.5 to 5 spikes/s at resting potential (-59.0 +/- 6 mV, mean +/- SD). When depolarized, type A cells responded with an initial high rate of firing, which rapidly declined to a steady state level. Spike-frequency adaptation (SFA) index (defined as steady state firing divided by peak activity x 100) was 40%, with a time constant for adaptation of 100-280 ms. When depolarized from membrane potentials more negative than resting, these neurons exhibited a silent period (up to 900 ms) before any spiking was observed (delayed excitation). The delay depended on the duration and magnitude of the hyperpolarizing prepulse that preceded depolarization. The action potentials of type A cells had a shoulder on the repolarization phase, measured 2-3 ms at one-half height, and increased in duration during repetitive firing. 3. At resting potential, type B neurons fired three to five times faster than type A. Although both type A and type B neurons showed spike-frequency adaptation, type B neurons adapted at a much faster rate than type A. The time constant for adaptation was 2-14 ms in type B cells. These cells displayed no delayed excitation on depolarization from membrane potentials more negative than rest. Some type B cells exhibited postinhibitory rebound (PIR) and depolarizing afterpotentials (DAPs). Both types A and B v-NTS neurons had comparable input resistance and showed inward rectification. 4. Neonatal v-NTS cells, in contrast to adult cells, belonged to a single population of neurons. Their resting membrane potential was -58 +/- 6.3 mV (mean +/- SD). The majority of these cells (30/34) were active (5-10 spikes/s) at rest. When depolarized, they showed an immediate increase in firing rate, which gradually slowed down to reach a steady state. Spike-frequency adaptation index was 59%, with a time constant for adaptation of 300-750 ms.(ABSTRACT TRUNCATED AT 400 WORDS)


2004 ◽  
Vol 91 (1) ◽  
pp. 571-575 ◽  
Author(s):  
Jason J. Kuo ◽  
Martijn Schonewille ◽  
Teepu Siddique ◽  
Annet N. A. Schults ◽  
Ronggen Fu ◽  
...  

ALS (amyotrophic lateral sclerosis) is an adult-onset and deadly neurodegenerative disease characterized by a progressive and selective loss of motoneurons. Transgenic mice overexpressing a mutated human gene (G93A) coding for the enzyme SOD1 (Cu/Zn superoxide dismutase) develop a motoneuron disease resembling ALS in humans. In this generally accepted ALS model, we tested the electrophysiological properties of individual embryonic and neonatal spinal motoneurons in culture by measuring a wide range of electrical properties influencing motoneuron excitability during current clamp. There were no differences in the motoneuron resting potential, input conductance, action potential shape, or afterhyperpolarization between G93A and control motoneurons. The relationship between the motoneuron's firing frequency and injected current (f-I relation) was altered. The slope of the f-I relation and the maximal firing rate of the G93A motoneurons were much greater than in the control motoneurons. Differences in spontaneous synaptic input were excluded as a cause of increased excitability. This finding identifies a markedly elevated intrinsic electrical excitability in cultured embryonic and neonatal mutant G93A spinal motoneurons. We conclude that the observed intrinsic motoneuron hyperexcitability is induced by the SOD1 toxic gain-of-function through an aberration in the process of action potential generation. This hyperexcitability may play a crucial role in the pathogenesis of ALS as the motoneurons were cultured from presymptomatic mice.


2021 ◽  
Author(s):  
Nikollas M. Benites ◽  
Beatriz Rodrigues ◽  
Carlos H. Silveira ◽  
Ricardo M. Leão

AbstractThe dorsal cochlear nucleus (DCN) in the auditory brainstem integrates auditory and somatosensory information. Mature fusiform neurons express two qualitative intrinsic states in equal proportions: quiet, with no spontaneous regular action potential firing, or active, with regular spontaneous action potential firing. However, how these firing states and other electrophysiological properties of fusiform neurons develop during early postnatal days to adulthood is not known. Thus, we recorded fusiform neurons from mice from P4 to P21 and analyzed their electrophysiological properties. In the pre-hearing phase (P4-P13), we found that fusiform neurons are mostly quiet, with the active state emerging after hearing onset at P14. Subthreshold properties present more variations before hearing onset, while action potential properties vary more after P14, developing bigger, shorter, and faster action potentials. Interestingly, the activity threshold is more depolarized in pre-hearing cells suggesting that persistent sodium current (INaP) increases its expression after hearing. In fact, INaP increases its expression after hearing, accordingly with the development of active neurons. Thus, we suggest that the post-hearing expression of INaP creates the active state of the fusiform neuron. At the same time, other changes refine the passive membrane properties and increase the speed of action potential firing of fusiform neurons.


Sign in / Sign up

Export Citation Format

Share Document