Two Types of Neurons in the Rat Cerebellar Nuclei as Distinguished by Membrane Potentials and Intracellular Fillings

2001 ◽  
Vol 85 (5) ◽  
pp. 2017-2029 ◽  
Author(s):  
Uwe Czubayko ◽  
Fahad Sultan ◽  
Peter Thier ◽  
Cornelius Schwarz

Classically, three classes of neurons in the cerebellar nuclei (CN), defined by different projection targets and content of transmitters, have been distinguished. However, evidence for different types of neurons based on different intrinsic properties is lacking. The present study reports two types of neurons defined mainly by their intrinsic properties, as determined by whole-cell patch recordings. The majority of cells (type I, n = 63) showed cyclic burst firing whereas a small subset (type II, n = 7) did not. Burst firing was used to distinguish the two types of neurons because, as it turned out, pharmacological interference could not be used to convert the non-bursting cells to bursting ones. Some of the membrane potentials exclusively present in type I neurons, such as sodium and calcium plateau potentials, low-threshold calcium spikes, and a slow calcium-dependent afterhyperpolarization, were found to contribute to the generation of burst firing. Other membrane potentials of type I neurons were not obviously related to the generation of bursts. These were 1) the lower amplitude and width of the action potential during spontaneous activity, 2) a sequence of afterhyperpolarization–afterdepolarization–afterhyperpolarization following each spike, and 3) the high spontaneous firing rate. In contrast, type II neurons lacked slow plateau potentials and low threshold spikes. Their action potentials showed higher amplitude and width and were followed by a single deep afterhyperpolarization. Furthermore, they showed a lower firing rate at rest. In both types of neurons, a delayed inward rectification was present. Neurons filled with neurobiotin revealed that the sizes of the somata and dendritic fields of type I neurons comprised the whole range known from Golgi studies, whereas those of the few type II neurons recovered were found to be in the lowest range. In view of their size and scarcity, we propose that type II neurons may correspond to CN interneurons.

1994 ◽  
Vol 72 (3) ◽  
pp. 1127-1139 ◽  
Author(s):  
A. Nambu ◽  
R. Llinas

1. We investigated the electrical properties of globus pallidus neurons intracellularly using brain slices from adult guinea pigs. Three types of neurons were identified according to their intrinsic electrophysiological properties. 2. Type I neurons (59%) were silent at the resting membrane level (-65 +/- 10 mV, mean +/- SD) and generated a burst of spikes, with strong accommodation, to depolarizing current injection. Calcium-dependent low-frequency (1-8 Hz) membrane oscillations were often elicited by membrane depolarization (-53 +/- 8 mV). A low-threshold calcium conductance and an A-current were also identified. The mean input resistance of this neuronal type was 70 +/- 22 M omega. 3. Type II neurons (37%) fired spontaneously at the resting membrane level (-59 +/- 9 mV). Their repetitive firing (< or = 200 Hz) was very sensitive to the amplitude of injected current and showed weak accommodation. Sodium-dependent high-frequency (20-100 Hz) subthreshold membrane oscillations were often elicited by membrane depolarization. This neuronal type demonstrated a low-threshold calcium spike and had the highest input resistance (134 +/- 62 M omega) of the three neuron types. 4. Type III neurons (4%) did not fire spontaneously at the resting membrane level (-73 +/- 5 mV). Their action potentials were characterized by a long duration (2.3 +/- 0.6 ms). Repetitive firing elicited by depolarizing current injection showed weak or no accommodation. This neuronal type had an A-current and showed the lowest input resistance (52 +/- 35 M omega) of the three neuron types. 5. Stimulation of the caudoputamen evoked inhibitory postsynaptic potentials (IPSPs) in Type I and II neurons. In Type II neurons the IPSPs were usually followed by rebound firing. Excitatory postsynaptic potentials and antidromic responses were also elicited in some Type I and II neurons. The estimated conduction velocity of the striopallidal projection was < 1 m/s (Type I neurons, 0.49 +/- 0.37 m/s; Type II neurons, 0.33 +/- 0.13 m/s).


2009 ◽  
Vol 297 (3) ◽  
pp. G582-G593 ◽  
Author(s):  
Kulmira Nurgali ◽  
Trung V. Nguyen ◽  
Michelle Thacker ◽  
Louise Pontell ◽  
John B. Furness

We investigated the effect of inflammation on slow synaptic transmission in myenteric neurons in the guinea pig ileum. Inflammation was induced by the intraluminal injection of trinitrobenzene sulfonate, and tissues were taken for in vitro investigation 6–7 days later. Brief tetanic stimulation of synaptic inputs (20 Hz, 1 s) induced slow excitatory postsynaptic potentials (EPSPs) in 49% and maintained postsynaptic excitation that lasted from 27 min to 3 h in 13% of neurons from the inflamed ileum. These neurons were classified electrophysiologically as AH neurons; 10 were morphological type II neurons, and one was type I. Such long-term hyperexcitability after a brief stimulus is not encountered in enteric neurons of normal intestine. Electrophysiological properties of neurons with maintained postsynaptic excitation were similar to those of neurons with slow EPSPs. Another form of prolonged excitation, sustained slow postsynaptic excitation (SSPE), induced by 1-Hz, 4-min stimulation, in type II neurons from the inflamed ileum reached its peak earlier but had lower amplitude than that in control. Unlike slow EPSPs and similar to SSPEs, maintained excitation was not inhibited by neurokinin-1 or neurokinin-3 receptor antagonists. Maintained postsynaptic excitation was not influenced by PKC inhibitors, but the PKA inhibitor, H-89, caused further increase in neuronal excitability. In conclusion, maintained excitation, observed only in neurons from the inflamed ileum, may contribute to the dysmotility, pain, and discomfort associated with intestinal inflammation.


2012 ◽  
Vol 107 (7) ◽  
pp. 1835-1844 ◽  
Author(s):  
Miloslav Kolaj ◽  
Li Zhang ◽  
Oline K. Rønnekleiv ◽  
Leo P. Renaud

Neurons in the rodent midline thalamic paraventricular nucleus (PVT) receive inputs from brain stem and hypothalamic sites known to participate in sleep-wake and circadian rhythms. To evaluate possible diurnal changes in their excitability, we used patch-clamp techniques to record and examine the properties of neurons in anterior PVT (aPVT) in coronal rat brain slices prepared at zeitgeber time (ZT) 2–6 vs. ZT 14–18 and recorded at ZT 8.4 ± 0.2 (day) vs. ZT 21.2 ± 0.2 (night), the subjective quiet vs. aroused states, respectively. Compared with neurons recorded during the day, neurons from the night period were significantly more depolarized and exhibited a lower membrane conductance that in part reflected loss of a potassium-mediated conductance. Furthermore, these neurons were also significantly more active, with tonic and burst firing patterns. Neurons from each ZT period were assessed for amplitudes of two conductances known to contribute to bursting behavior, i.e., low-threshold-activated Ca2+ currents ( IT) and hyperpolarization-activated cation currents ( Ih). Data revealed that amplitudes of both IT and Ih were significantly larger during the night period. In addition, biopsy samples from the night period revealed a significant increase in mRNA for Cav3.1 and Cav3.3 low-threshold Ca2+ channel subtypes. Neurons recorded from the night period also displayed a comparative enhancement in spontaneous bursting at membrane potentials of approximately −60 mV and in burst firing consequent to hyperpolarization-induced low-threshold currents and depolarization-induced current pulses. These novel in vitro observations reveal that midline thalamic neurons undergo diurnal changes in their IT, Ih, and undefined potassium conductances. The underlying mechanisms remain to be characterized.


1979 ◽  
Vol 42 (5) ◽  
pp. 1479-1493 ◽  
Author(s):  
R. Budelli ◽  
O. Macadar

1. We classified the utricular afferents on the basis of their spontaneous acitivity and responses to tilts and vibrations. 2. Type I afferents fire spontaneously in a regular pattern; their responses to tilts consist of a phasic-tonic change in firing rate. They may respond to vibrations by increasing or decreasing their rate and show no adaptation. 3. The spontaneous activity and the responses to tilts of type II are similar to those observed in type I afferents. The differences become apparent when the preparation is subjected to a vibrational stimulus, since type II neurons increase their firing rate regardless of the stimulus frequency and show adaptation. 4. Type III neurons have no spontaneous activity. They respond to tilts by firing during the transition from one position to the other. They respond to a vibrational stimulus with maintained firing and show no adaptation. 5. We studied the dynamic responses of each type of neuron. We used sensitivity curves for the study of type III afferents and proposed a statistical method to define gain curves for the study of the other types. 6. The gain curves generated by type I neurons reach their maximum at frequencies of stimulation close to the spontaneous rate of firing. 7. In the gain curves of type II afferents the maximum corresponds to frequencies higher than their spontaneous activity. 8. Sensitivity curves and gain curves give similar results for type III fibers. The sensitivity curves of these afferents were classified into four subtypes. 9. We studied the responses of the three types of afferents to bursts of sinusoidal vibrations. 10. We concluded that the properties of types I and II fibers are fit to carry information about movements and position of the head, but also transmit acoustical information. Type III fibers are more adapted to provide information about acoustical stimuli, but can also convey information about head movements.


1998 ◽  
Vol 80 (3) ◽  
pp. 1082-1093 ◽  
Author(s):  
Rolf-Detlef Treede ◽  
Richard A. Meyer ◽  
James N. Campbell

Treede, Rolf-Detlef, Richard A. Meyer, and James N. Campbell. Myelinated mechanically insensitive afferents from monkey hairy skin: heat-response properties. J. Neurophysiol. 80: 1082–1093, 1998. To compare the heat responses of mechanically sensitive and mechanically insensitive A-fiber nociceptors, an electrical search technique was used to locate the receptive fields of 156 A-fibers that innervated the hairy skin in the anesthetized monkey (77 Aβ-fibers, 79 Aδ-fibers). Two-thirds of these afferents were either low-threshold mechanoreceptors ( n = 91) or low-threshold cold receptors ( n = 11). Nine Aβ-fibers and 41 Aδ-fibers were cutaneous nociceptors, and four Aδ-fibers innervated subcutaneous tissue. The majority of cutaneous A-fiber nociceptors were heat sensitive (43/50 = 86%). Heat-insensitive cutaneous A-fiber nociceptors consisted of one cold nociceptor, three silent nociceptors, and three high-threshold mechanoreceptors. Two types of response were observed to an intense heat stimulus (53°C, 30 s). Type I ( n = 26) was characterized by a long latency (mean: 5 s) and a late peak discharge (16 s). Type II ( n = 17) was characterized by a short latency (0.2 s) and an early peak discharge (0.5 s). Type I fibers exhibited faster conduction velocities (25 vs. 14 m/s) and higher heat thresholds (>53 vs. 47°C, 1-s duration) than type II fibers. The possibility that the type I heat response was a result of sensitization was tested in three fibers by determining the heat threshold to 30-s duration stimuli (42–46°C). For this long stimulus duration heat thresholds were reproducible across multiple runs, and the threshold to the 1-s duration stimulus was not altered by these tests. Thus fibers with a type I heat response were not high-threshold mechanoreceptors that developed a heat response through sensitization. Fibers with a type II heat response had significantly higher mechanical thresholds (median: 15 bar) than fibers with a type I heat response (5 bar). This finding accounts for the observation that type II heat responses were infrequently observed in earlier studies wherein the search technique depended on mechanical responsiveness. Fibers with a type II response exhibited a graded response to heat stimuli, marked fatigue to repeated applications of heat stimuli, and adaptation to sustained heat stimuli similar to that seen in C-fiber nociceptors. First pain sensation to heat is served by type II A-fiber nociceptors that are mechanically insensitive. Type I A-fiber nociceptors likely signal pain to long-duration heat stimuli and may signal first pain sensation to mechanical stimuli.


1992 ◽  
Vol 68 (3) ◽  
pp. 973-977 ◽  
Author(s):  
D. Contreras ◽  
R. Curro Dossi ◽  
M. Steriade

1. Two types of cat reticular (RE) thalamic cells were disclosed by means of intracellular recordings under urethan anesthesia. The RE neurons were identified by their typical depolarizing spindle oscillations in response to synchronous stimulation of the internal capsule. 2. In type I neurons (n = 41), depolarizing current pulses induced tonic firing at the resting or slightly depolarized membrane potential (Vm) and triggered high-frequency spike bursts at a Vm more negative than -75 mV. As well, these cells discharged rebound bursts at the break of a hyperpolarizing current pulse. Internal capsule stimulation elicited spindle sequences made off by depolarizing waves giving rise to spike bursts. 3. Type II cells (n = 9) did not discharge spike bursts to large depolarizing current pulses even when the Vm reached -100 mV, nor did they fire rebound bursts after long-lasting hyperpolarizing current pulses or spike bursts riding on the rhythmic depolarizing components of spindle sequences. 4. Compared with type I cells, type II cells showed less frequency accommodation during tonic firing. The latter neuronal class discharged at high frequencies (40 Hz) with slight DC depolarization, approximately 8-10 Hz at the resting Vm, and no underlying synaptic or subthreshold oscillatory events could be detected when the firing was blocked by DC hyperpolarization. 5. The presence of two cell classes in the RE nucleus challenges the common view that this nucleus consists of a single neuronal class. We suggest that a different set of conductances is present in type II RE neurons, thus preventing the low-threshold Ca2+ current from dominating the behavior of these cells.


2014 ◽  
Vol 111 (6) ◽  
pp. 1308-1317 ◽  
Author(s):  
Melia Condon ◽  
Ingvars Birznieks ◽  
Kathryn Hudson ◽  
David K. Chelvanayagam ◽  
David Mahns ◽  
...  

We undertook a neurophysiological investigation of the responses of low-threshold mechanoreceptors in the human finger pad to surfaces of differing softness. Unitary recordings were made from 26 slowly adapting type I (SAI), 17 fast-adapting type I (FAI), and 9 slowly adapting type II (SAII) afferents via tungsten microelectrodes inserted into the median nerve at the wrist. A servo-controlled stimulator applied ramp-and-hold forces (1, 2, 4 N) at a constant loading and unloading rate (2 N/s) via a flat silicone disc over the center of the finger pad. Nine discs were used, which linearly increased in stiffness across the range. Population responses of the SAI afferents showed the greatest sensitivity to compliance, with a steep monotonic increase in mean firing rate with increasing stiffness (decreasing compliance) of the surface during the loading and plateau (but not unloading) phases. FAI afferents also showed a linear increase in firing during the loading but not unloading phase, although the slope was significantly lower than that of the SAI afferents at all amplitudes. Conversely, SAII afferents were influenced by object compliance only in certain conditions. Given their high density in the finger pads and their linear relationship between firing rate and object compliance during the loading and plateau phases, SAI afferents (together with FAI afferents during the loading phase) are ideally suited to contributing information on surface compliance to the overall estimation of softness, but the SAII afferents appear to play only a minor role.


2005 ◽  
Vol 94 (6) ◽  
pp. 3795-3804 ◽  
Author(s):  
James B. Fallon ◽  
Leah R. Bent ◽  
Penelope A. McNulty ◽  
Vaughan G. Macefield

It has been known for some time that populations of cutaneous and muscle afferents can provide short-latency facilitation of motoneuron pools. Recently, it has been shown that the input from individual low-threshold mechanoreceptors in the glabrous skin of the hand can modulate ongoing activity in muscles acting on the fingers via spinally mediated pathways. We have extended this work to examine whether such strong synaptic coupling exists between tactile afferents in the sole of the foot and motoneurons supplying muscles that act about the ankle. We recorded from 53 low-threshold mechanoreceptors in the glabrous skin of the foot via microelectrodes inserted percutaneously into the tibial nerve of awake human subjects. Reflex modulation of ongoing whole muscle electromyography (EMG) was observed for each of the four classes of low-threshold cutaneous mechanoreceptors (17 of 21 rapidly adapting type I; 2 of 4 rapidly adapting type II; 7 of 18 slowly adapting type I; and 4 of 10 slowly adapting type II). Reflex modulation of the firing probability in single motor units (5 of 11) was also observed. These results indicate that strong synaptic coupling between tactile afferents and spinal motoneurons is not a specialization of the hand and emphasizes the potential importance of cutaneous inputs from the sole of the foot in the control of gait and posture.


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Sign in / Sign up

Export Citation Format

Share Document