Na+ Entry Through AMPA Receptors Results in Voltage-Gated K+ Channel Blockade in Cultured Rat Spinal Cord Motoneurons

2002 ◽  
Vol 88 (2) ◽  
pp. 965-972 ◽  
Author(s):  
P. Van Damme ◽  
L. Van den Bosch ◽  
E. Van Houtte ◽  
J. Eggermont ◽  
G. Callewaert ◽  
...  

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor currents, evoked with the agonist kainate, were studied with the gramicidin perforated-patch-clamp technique in cultured rat spinal cord motoneurons. Kainate-induced currents could be blocked by the AMPA receptor antagonist LY 300164 and displayed an apparent strong inward rectification. This inward rectification was not a genuine property of AMPA receptor currents but was a result of a concomitant decrease in outward current at potentials positive to −40.5 ± 1.3 mV. The AMPA receptor current itself was nearly linear (rectification index 0.91). The kainate-inhibited outward current had a reversal potential close to the estimated K+equilibrium potential and was blocked by 30 mM tetraethylammonium. When voltage steps were applied, it was found that kainate inhibited both the delayed rectifier K+ current KV and the transient outward K+ current, KA. The kainate-induced inhibition of K+ currents was dependent on ion flux through the AMPA receptor, because no change in the membrane conductance was noticed in the presence of LY 300164. Removing extracellular Ca2+ had no effect, whereas replacing extracellular Na+ or clamping the membrane close to the estimated Na+equilibrium potential during kainate application attenuated the inhibition of the K+ current. Sustained Na+ influx induced by application of the Na+ ionophore monensin could mimic the effect of kainate on K+ conductance. These findings demonstrate that Na+ influx through AMPA receptors results in blockade of voltage-gated K+channels.

1995 ◽  
Vol 269 (1) ◽  
pp. C179-C187 ◽  
Author(s):  
B. A. Hughes ◽  
M. Takahira ◽  
Y. Segawa

Currents in freshly dissociated adult human retinal pigment epithelial (RPE) cells were studied using the perforated patch-clamp technique. The zero-current potential (V0) averaged -48.9 +/- 7.7 mV (n = 50). Depolarizing voltage pulses from -70 mV evoked an outward current that activated with first-order kinetics and that did not inactivate during prolonged depolarizations. Repolarizing the membrane potential produced tail currents that reversed near the K+ equilibrium potential, indicating that the sustained outward current was carried mainly by K+. The outwardly rectifying K+ conductance (gK) had an activation threshold voltage near -60 mV and was half-maximal at -37 mV. Approximately 25% of gK was active at the average V0. The K+ current was nearly completely blocked by 2 mM Ba2+ but was relatively insensitive to 20 mM tetraethylammonium. The kinetics, voltage dependence, and blocker sensitivity of this current clearly distinguish it from delayed rectifier K+ currents previously identified in RPE cells. We conclude that the sustained outward K+ current may help establish the resting potential of the apical and/or basolateral membranes and may also participate in K+ transport across the RPE.


2011 ◽  
Vol 105 (5) ◽  
pp. 2337-2349 ◽  
Author(s):  
Hai-Yuan Yue ◽  
Tsugumi Fujita ◽  
Eiichi Kumamoto

Although intrathecally administrated galanin modulates nociceptive transmission in a biphasic manner, this has not been fully examined previously. In the present study, the action of galanin on synaptic transmission in the substantia gelatinosa (SG) neurons of adult rat spinal cord slices was examined, using the whole cell patch-clamp technique. Galanin concentration-dependently increased the frequency of spontaneous excitatory postsynaptic current (EPSC; EC50 = 2.0 nM) without changing the amplitude, indicating a presynaptic effect. This effect was reduced in a Ca2+-free, or voltage-gated Ca2+ channel blocker La3+-containing Krebs solution and was produced by a galanin type-2/3 receptor (GalR2/R3) agonist, galanin 2–11, but not by a galanin type-1 receptor (GalR1) agonist, M617. Galanin also concentration-dependently produced an outward current at −70 mV (EC50 = 44 nM), although this appeared to be contaminated by a small inward current. This outward current was mimicked by M617, but not by galanin 2–11. Moreover, galanin reduced monosynaptic Aδ-fiber- and C-fiber-evoked EPSC amplitude; the former reduction was larger than the latter. A similar action was produced by galanin 2–11, but not by M617. Spontaneous and focally evoked inhibitory (GABAergic and glycinergic) transmission was unaffected by galanin. These findings indicate that galanin at lower concentrations enhances the spontaneous release of l-glutamate from nerve terminals by Ca2+ entry from the external solution following GalR2/R3 activation, whereas galanin at higher concentrations also produces a membrane hyperpolarization by activating GalR1. Moreover, galanin reduces l-glutamate release onto SG neurons from primary afferent fibers by activating GalR2/R3. These effects could partially contribute to the behavioral effect of galanin.


2013 ◽  
Vol 26 (3) ◽  
pp. 170-177 ◽  
Author(s):  
Xiaoning Li ◽  
Weiqiang Chen ◽  
Jiangtao Sheng ◽  
Deliang Cao ◽  
Wanchun Wang

ObjectiveInterleukin-6 (IL-6) is a pleiotropic proinflammatory cytokine that plays a key role in the injuries and diseases of the central nervous system (CNS). A voltage-gated Na+ channel (VGSC) is essential for the excitability and electrical properties of the neurons. However, there is still limited information on the role of IL-6 in voltage-gated sodium channels. Our study aimed to investigate the effects of IL-6 on Na+ currents in cultured spinal-cord neurons.MethodsVGSC currents were activated and recorded using whole-cell patch-clamp technique in the cultured rat spinal cord neurons. The effects of IL-6 concentration and exposure duration were examined. To determine whether any change in the number of channels in the plasma membrane can inhibit IL-6 on VGSC currents, we examined the expression of α1A (SCN1α) subunit mRNA level and protein level in the neurons before and after IL-6 induction using real-time polymerase chain reaction.ResultsWe verified that IL-6, through a receptor-mediated mechanism, suppressed Na+ currents in a time- and dose-dependent manner, but did not alter the voltage-dependent activation and inactivation. Gp130 was involved in this inhibition. Furthermore, the spike amplitude was also inhibited by IL-6 in the doses that decreased the Na+ currents.ConclusionVGSC currents are significantly inhibited by IL-6. Our findings reveal that the potential neuroprotection of IL-6 may result from the inhibitory effects on VGSC currents.


1994 ◽  
Vol 266 (1) ◽  
pp. C42-C51 ◽  
Author(s):  
B. Fermini ◽  
S. Nattel

Using the whole cell configuration of the patch-clamp technique, we studied the effect of isotonic replacement of bath sodium chloride (NaCl) by choline chloride (ChCl) in dog atrial myocytes. Our results show that ChCl triggered 1) activation of a time-independent background current, characterized by a shift of the holding current in the outward direction at potentials positive to the K+ equilibrium potential (EK), and 2) activation of a time- and voltage-dependent outward current, following depolarizing voltage steps positive to EK. Because the choline-induced current obtained by depolarizing steps exhibited properties similar to the delayed rectifier K+ current (IK), we named it IKCh. The amplitude of IKCh was determined by extracellular ChCl concentration, and this current was generally undetectable in the absence of ChCl. IKCh was not activated by acetylcholine (0.001-1.0 mM) or carbachol (10 microM) and could not be recorded in the absence of ChCl or when external NaCl was replaced by sucrose or tetramethylammonium chloride. IKCh was inhibited by atropine (0.01-1.0 microM) but not by the M1 antagonist pirenzepine (up to 10 microM). This current was carried mainly by K+ and was inhibited by CsCl (120 mM, in the pipette) or barium (1 mM, in the bath). We conclude that in dog atrial myocytes, ChCl activates a background conductance comparable to ACh-dependent K+ current, together with a time-dependent K+ current showing properties similar to IK.


2001 ◽  
Vol 88 (1-2) ◽  
pp. 186-193 ◽  
Author(s):  
Qi-Qi Zhou ◽  
Hiroki Imbe ◽  
Shiping Zou ◽  
Ronald Dubner ◽  
Ke Ren

1996 ◽  
Vol 270 (6) ◽  
pp. G932-G938 ◽  
Author(s):  
J. Jury ◽  
K. R. Boev ◽  
E. E. Daniel

Single smooth muscle cells from the opossum body circular muscle were isolated and whole cell currents were characterized by the whole cell patch-clamp technique. When the cells were held at -50 mV and depolarized to 70 mV in 20-mV increments, initial small inactivating inward currents were evoked (-30 to 30 mV) followed by larger sustained outward currents. Depolarization from a holding potential of -90 mV evoked an initial fast inactivating outward current sensitive to 4-aminopyridine but not to high levels of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). The outward currents reversed near K+ equilibrium potential and were abolished when KCl was replaced by CsCl in the pipette solution. The sustained outward current was inhibited by quinine and cesium. High EGTA in the pipette solution reduced but did not abolish the sustained outward currents, suggesting that both Ca(2+)-dependent and -independent currents were evoked. The nitric oxide (NO)-releasing agents Sin-1 and sodium nitroprusside increased outward K+ currents. High levels of EGTA in the pipette solution abolished the increase in outward current induced by Sin-1. The presence of cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum (SR) Ca2+ pump, blocked the effects of NO-releasing agents. We conclude that NO release activates K+ outward currents in opossum esophagus circular muscle, which may depend on Ca2+ release from the SR stores.


2006 ◽  
Vol 96 (5) ◽  
pp. 2670-2677 ◽  
Author(s):  
Morten Smith ◽  
Jean-François Perrier

Interneurons in the ventral horn of the spinal cord play a central role in motor control. In adult vertebrates, their intrinsic properties are poorly described because of the lack of in vitro preparations from the spinal cord of mature mammals. Taking advantage of the high resistance to anoxia in the adult turtle, we used a slice preparation from the spinal cord. We used the whole cell blind patch-clamp technique to record from ventral horn interneurons. We characterized their firing patterns in response to depolarizing current pulses and found that all the interneurons fired repetitively. They displayed bursting, adapting, delayed, accelerating, or oscillating firing patterns. By combining electrophysiological and pharmacological tests, we showed that interneurons expressed slow inward rectification, plateau potential, voltage-sensitive transient outward rectification, and low-threshold spikes. These results demonstrate a diversity of intrinsic properties that may enable a rich repertoire of activity patterns in the network of ventral horn interneurons.


Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 1043-1055 ◽  
Author(s):  
L Kapural ◽  
MB Feinstein ◽  
F O'Rourke ◽  
A Fein

Abstract In normal human megakaryocytes, we identified a delayed rectifier type of voltage-gated outward K+ current (DRK). In two human megakaryoblastic tumor cell lines (DAMI, CHRF-288–11) and the human erythroleukemia cell line (HEL) the DRK current was not detected. To determine if the absence of the DRK current in the tumor cells is the result of the underlying malignant state, we examined megakaryocytes from myelogenous leukemia patients. In 24 of 29 megakaryocytes from the myelogenous leukemia patients, the DRK current was greatly suppressed, whereas in the remaining 5 megakaryocytes a normal large amplitude DRK current was present. We had the opportunity to reexamine megakaryocytes from a patient with acute promyelocytic leukemia (M3), after chemotherapy. Whereas the DRK current was suppressed before treatment, the current reappeared after chemotherapy. Exposure to the adenylate cyclase activator, forskolin, caused the appearance of a voltage-gated outward current in the megakaryocytes of patients with acute myelogenous leukemia. This finding suggests either that the channels underlying the DRK current are present but somehow suppressed in megakaryocytes from these patients or that forskolin induces a different voltage-gated outward current. We suggest that the megakaryocytes from the myelogenous leukemia patients with suppressed DRK current are abnormal, whereas the others may be normal megakaryocytes. The suppression of the DRK current may be a contributory factor to the dysregulation of thrombopoiesis (Zittoun et al: Semin Hop Paris 44:183, 1968 and Rabellino et al: Blood 63:615, 1984) in myelogenous leukemias.


1990 ◽  
Vol 63 (4) ◽  
pp. 725-737 ◽  
Author(s):  
S. K. Florio ◽  
C. D. Westbrook ◽  
M. R. Vasko ◽  
R. J. Bauer ◽  
J. L. Kenyon

1. We used the patch-clamp technique to study voltage-activated transient potassium currents in freshly dispersed and cultured chick dorsal root ganglion (DRG) cells. Whole-cell and cell-attached patch currents were recorded under conditions appropriate for recording potassium currents. 2. In whole-cell experiments, 100-ms depolarizations from normal resting potentials (-50 to -70 mV) elicited sustained outward currents that inactivated over a time scale of seconds. We attribute this behavior to a component of delayed rectifier current. After conditioning hyperpolarizations to potentials negative to -80 mV, depolarizations elicited transient outward current components that inactivated with time constants in the range of 8-26 ms. We attribute this behavior to a transient outward current component. 3. Conditioning hyperpolarizations increased the rate of activation of the net outward current implying that the removal of inactivation of the transient outward current allows it to contribute to early outward current during depolarizations from negative potentials. 4. Transient current was more prominent on the day the cells were dispersed and decreased with time in culture. 5. In cell-attached patches, single channels mediating outward currents were observed that were inactive at resting potentials but were active transiently during depolarizations to potentials positive to -30 mV. The probability of channels being open increased rapidly (peaking within approximately 6 ms) and then declined with a time constant in the range of 13-30 ms. With sodium as the main extracellular cation, single-channel conductances ranged from 18 to 32 pS. With potassium as the main extracellular cation, the single-channel conductance was approximately 43 pS, and the channel current reversed near 0 mV, as expected for a potassium current. 6. We conclude that the transient potassium channels mediate the component of transient outward current seen in the whole-cell experiments. This current is a relatively small component of the net current during depolarizations from normal resting potentials, but it can contribute significant outward current early in depolarizations from hyperpolarized potentials.


1991 ◽  
Vol 260 (4) ◽  
pp. H1390-H1393 ◽  
Author(s):  
K. B. Walsh ◽  
J. P. Arena ◽  
W. M. Kwok ◽  
L. Freeman ◽  
R. S. Kass

When the patch-clamp technique was used, a slowly activating, time-dependent outward current was identified in both cell-attached and excised membrane patches obtained from guinea pig ventricular myocytes. This macroscopic patch current was present in approximately 50% of patches studied and could be observed both in the presence and absence of unitary single channel activity (i.e., ATP-sensitive K+ channels). The time course of activation of the patch current resembled that of the whole cell delayed-rectifier K+ current (IK) recorded under similar ionic conditions, and the patch current and IK were activated over a similar membrane potential range. The time-dependent patch current could be eliminated when the Nernst potential for K+ equaled that of the pulse voltage. The patch current was inhibited by external addition of the tertiary ammonium compound LY 97241 (50 microM) and was augmented after internal application of the catalytic subunit of adenosine 3',5'-cyclic monophosphate-dependent protein kinase (500 nM). Deactivating tail currents with kinetics similar to those of IK could be recorded to cell-attached and excised patches. Unitary single channel events underlying the time-dependent patch current could not be resolved despite various attempts to increase single channel conductance. Thus our results suggest that a major component of delayed rectification in guinea pig ventricular cells is due to the activity of a high-density, extremely low conductance K+ channel.


Sign in / Sign up

Export Citation Format

Share Document