scholarly journals Naso-Temporal Asymmetry for Signals Invisible to the Retinotectal Pathway

2008 ◽  
Vol 100 (1) ◽  
pp. 412-421 ◽  
Author(s):  
Aline Bompas ◽  
Thomas Sterling ◽  
Robert D. Rafal ◽  
Petroc Sumner

Monocular viewing conditions show an asymmetry between stimuli presented in the temporal and nasal visual fields in their efficiency for automatically triggering eye saccades and grasping attention. For instance, observers free to make a saccade to one of two stimuli presented together orient preferentially to the temporal stimulus. Such naso-temporal asymmetry (NTA) has been assumed to reflect the asymmetry in the retinotectal pathway to the superior colliculus. We tested this hypothesis using S cone stimuli, which are invisible to the magnocellular and retinotectal pathways. The observed NTA in choice saccades to bilateral stimuli was no less present for S cone stimuli than for luminance stimuli. Additionally, the amplitude of the NTA can be enhanced when S cone signals are added to luminance signals. These results suggest that behavioral NTA in humans is not diagnostic of retinotectal mediation. Furthermore, we found no asymmetries in latency, suggesting that the NTA in saccade choice does not originate simply from a bottom-up asymmetry in any low level visual pathways.

2021 ◽  
Author(s):  
◽  
Ibrahim Mohammad Hussain Rahman

<p>The human visual attention system (HVA) encompasses a set of interconnected neurological modules that are responsible for analyzing visual stimuli by attending to those regions that are salient. Two contrasting biological mechanisms exist in the HVA systems; bottom-up, data-driven attention and top-down, task-driven attention. The former is mostly responsible for low-level instinctive behaviors, while the latter is responsible for performing complex visual tasks such as target object detection.  Very few computational models have been proposed to model top-down attention, mainly due to three reasons. The first is that the functionality of top-down process involves many influential factors. The second reason is that there is a diversity in top-down responses from task to task. Finally, many biological aspects of the top-down process are not well understood yet.  For the above reasons, it is difficult to come up with a generalized top-down model that could be applied to all high level visual tasks. Instead, this thesis addresses some outstanding issues in modelling top-down attention for one particular task, target object detection. Target object detection is an essential step for analyzing images to further perform complex visual tasks. Target object detection has not been investigated thoroughly when modelling top-down saliency and hence, constitutes the may domain application for this thesis.  The thesis will investigate methods to model top-down attention through various high-level data acquired from images. Furthermore, the thesis will investigate different strategies to dynamically combine bottom-up and top-down processes to improve the detection accuracy, as well as the computational efficiency of the existing and new visual attention models. The following techniques and approaches are proposed to address the outstanding issues in modelling top-down saliency:  1. A top-down saliency model that weights low-level attentional features through contextual knowledge of a scene. The proposed model assigns weights to features of a novel image by extracting a contextual descriptor of the image. The contextual descriptor plays the role of tuning the weighting of low-level features to maximize detection accuracy. By incorporating context into the feature weighting mechanism we improve the quality of the assigned weights to these features.  2. Two modules of target features combined with contextual weighting to improve detection accuracy of the target object. In this proposed model, two sets of attentional feature weights are learned, one through context and the other through target features. When both sources of knowledge are used to model top-down attention, a drastic increase in detection accuracy is achieved in images with complex backgrounds and a variety of target objects.  3. A top-down and bottom-up attention combination model based on feature interaction. This model provides a dynamic way for combining both processes by formulating the problem as feature selection. The feature selection exploits the interaction between these features, yielding a robust set of features that would maximize both the detection accuracy and the overall efficiency of the system.  4. A feature map quality score estimation model that is able to accurately predict the detection accuracy score of any previously novel feature map without the need of groundtruth data. The model extracts various local, global, geometrical and statistical characteristic features from a feature map. These characteristics guide a regression model to estimate the quality of a novel map.  5. A dynamic feature integration framework for combining bottom-up and top-down saliencies at runtime. If the estimation model is able to predict the quality score of any novel feature map accurately, then it is possible to perform dynamic feature map integration based on the estimated value. We propose two frameworks for feature map integration using the estimation model. The proposed integration framework achieves higher human fixation prediction accuracy with minimum number of feature maps than that achieved by combining all feature maps.  The proposed works in this thesis provide new directions in modelling top-down saliency for target object detection. In addition, dynamic approaches for top-down and bottom-up combination show considerable improvements over existing approaches in both efficiency and accuracy.</p>


2018 ◽  
Vol 27 (6) ◽  
pp. 470-476 ◽  
Author(s):  
Senne Braem ◽  
Tobias Egner

Cognitive flexibility refers to the ability to quickly reconfigure our mind, as when we switch between different tasks. This review highlights recent evidence showing that cognitive flexibility can be conditioned by simple incentives typically known to drive lower-level learning, such as stimulus–response associations. Cognitive flexibility can also become associated with, and triggered by, bottom-up contextual cues in our environment, including subliminal cues. Therefore, we suggest that the control functions that mediate cognitive flexibility are grounded in, and guided by, basic associative-learning mechanisms and abide by the same learning principles as more low-level forms of behavior. Such a learning perspective on cognitive flexibility offers new directions and important implications for further research, theory, and applications.


2013 ◽  
Vol 14 (S1) ◽  
Author(s):  
Micah Richert ◽  
Jayram Moorkanikara Nageswaran ◽  
Sach Sokol ◽  
Botond Szatmary ◽  
Csaba Petre ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
pp. 249
Author(s):  
Mwakasangula Eliza ◽  
Tefurukwa W. Oscar

This paper focuses on the main challenges facing participation in the bottom up planning processes at Korogwe Town Council (KTC). The study used 329 respondents and employed interviews, informal discussion, observation, and documentary reviews to gather data. Mainly narration and content analyses were used to scrutinize all data.The findings show that there were: inadequate community participation in planning at KTC due to lack of motivation and training, shortage of staff, lack of funds, inflexibility, irresponsibility, and lack of council mechanism for participation. Consequently, there was low level of community members participating in bottom up planning process. In order to encourage more people to be part of planning process, among other things, there is need to improve (or introduce) motivation to and training of community members, leaders and officers for effective bottom up participation participate.


Perception ◽  
2016 ◽  
Vol 46 (1) ◽  
pp. 31-49 ◽  
Author(s):  
Mick Zeljko ◽  
Philip M. Grove

The stream-bounce effect refers to a bistable motion stimulus that is interpreted as two targets either “streaming” past or “bouncing” off one another, and the manipulations that bias responses. Directional bias, according to Bertenthal et al., is an account of the effect proposing that low-level motion integration promotes streaming, and its disruption leads to bouncing, and it is sometimes cited either directly in a bottom-up fashion or indirectly under top-down control despite Sekuler and Sekuler finding evidence inconsistent with it. We tested two key aspects of the hypothesis: (a) comparable changes in speed should produce comparable disruptions and lead to similar effects; and (b) speed changes alone should disrupt integration without the need for additional more complex changes of motion. We found that target motion influences stream-bounce perception, but not as directional bias predicts. Our results support Sekuler and Sekuler and argue against the low-level motion signals driving perceptual outcomes in stream-bounce displays (directly or indirectly) and point to higher level inferential processes involving perceptual history and expectation. Directional bias as a mechanism should be abandoned and either another specific bottom-up process must be proposed and tested or consideration should be given to top-down factors alone driving the effect.


1976 ◽  
Vol 39 (4) ◽  
pp. 722-744 ◽  
Author(s):  
C. W. Mohler ◽  
R. H. Wurtz

1. We investigated the characteristics of cells in the intermediate layers of the superior colliculus that increase their rate of discharge before saccadic eye movements. Eye movements were repeatedly elicited by training rhesus monkeys to fixate on a spot of light and to make saccades to other spots of light when the fixation spot was turned off. 2. The eye movement cells showed consistent variations with their depth within the colliculus. The onset of the cell discharge led the eye movement by less time and the duration of the discharge was shorter as the cell was located closer to the dorsal edge of the intermediate layers. The movements fields (that area of the visual field where a saccade into the area is preceded by a burst of cell discharges) of each successive cell also became smaller as the cells were located more dorsally. The profile of peak discharge frequency remained fairly flat throughout the movement field of the cells regardless of depth of the cell within the colliculus. 3. A new type of eye movement-related cell has been found which usually lies at the border between the superficial and intermediate layers. This cell type, the visually triggered movement cell, increased its rate of discharge before saccades made to a visual stimulus but not before spontaneous saccades of equal amplitude made in the light or the dark. A vigorous discharge of these cells before an eye movement was dependent on the presence of a visual target; the cells seemed to combine the visual input of superficial layer cells and the movement-related input of the intermediate layer cells. The size of the movement fields of these cells were about the same size as the visual fields of superficial layer cells just above them...


2005 ◽  
Vol 94 (4) ◽  
pp. 2491-2503 ◽  
Author(s):  
Keith A. Schneider ◽  
Sabine Kastner

The superior colliculus (SC) is a multimodal laminar structure located on the roof of the brain stem. The SC is a key structure in a distributed network of areas that mediate saccadic eye movements and shifts of attention across the visual field and has been extensively studied in nonhuman primates. In humans, it has proven difficult to study the SC with functional MRI (fMRI) because of its small size, deep location, and proximity to pulsating vascular structures. Here, we performed a series of high-resolution fMRI studies at 3 T to investigate basic visual response properties of the SC. The retinotopic organization of the SC was determined using the traveling wave method with flickering checkerboard stimuli presented at different polar angles and eccentricities. SC activations were confined to stimulation of the contralateral hemifield. Although a detailed retinotopic map was not observed, across subjects, the upper and lower visual fields were represented medially and laterally, respectively. Responses were dominantly evoked by stimuli presented along the horizontal meridian of the visual field. We also measured the sensitivity of the SC to luminance contrast, which has not been previously reported in primates. SC responses were nearly saturated by low contrast stimuli and showed only small response modulation with higher contrast stimuli, indicating high sensitivity to stimulus contrast. Responsiveness to stimulus motion in the SC was shown by robust activations evoked by moving versus static dot stimuli that could not be attributed to eye movements. The responses to contrast and motion stimuli were compared with those in the human lateral geniculate nucleus. Our results provide first insights into basic visual responses of the human SC and show the feasibility of studying subcortical structures using high-resolution fMRI.


2017 ◽  
Vol 34 ◽  
Author(s):  
NA ZHOU ◽  
PHILLIP S. MAIRE ◽  
SEAN P. MASTERSON ◽  
MARTHA E. BICKFORD

AbstractComparative studies have greatly contributed to our understanding of the organization and function of visual pathways of the brain, including that of humans. This comparative approach is a particularly useful tactic for studying the pulvinar nucleus, an enigmatic structure which comprises the largest territory of the human thalamus. This review focuses on the regions of the mouse pulvinar that receive input from the superior colliculus, and highlights similarities of the tectorecipient pulvinar identified across species. Open questions are discussed, as well as the potential contributions of the mouse model for endeavors to elucidate the function of the pulvinar nucleus.


2015 ◽  
Vol 95 (9) ◽  
pp. 1244-1253 ◽  
Author(s):  
Clinton J. Wutzke ◽  
Richard A. Faldowski ◽  
Michael D. Lewek

Background Following stroke, spatiotemporal gait asymmetries persist into the chronic phases, despite the neuromuscular capacity to produce symmetric walking patterns. This persistence of gait asymmetry may be due to deficits in perception, as the newly established asymmetric gait pattern is perceived as normal. Objective The purpose of this study was to determine the effect of usual overground gait asymmetry on the ability to consciously and unconsciously perceive the presence of gait asymmetry in people poststroke. Design An observational study was conducted. Methods Thirty people poststroke walked overground and on a split-belt treadmill with the belts moving at different speeds (0%–70% difference) to impose varied step length and stance time asymmetries. Conscious awareness and subconscious detection of imposed gait patterns were determined for each participant, and the asymmetry magnitudes at those points were compared with overground gait. Results For both spatial and temporal asymmetry variables, the asymmetry magnitude at the threshold of awareness was significantly greater than the asymmetry present at the threshold of detection or during overground gait. Participants appeared to identify belt speed differences using the type of gait asymmetry they typically exhibited (ie, step length or stance time asymmetries during overground gait). Limitations Very few individuals with severe spatiotemporal asymmetry were tested, and participants were instructed to identify asymmetric belt speeds rather than interlimb movements. Conclusions The data suggest that asymmetry magnitudes need to exceed usual overground levels to reach conscious awareness. Therefore, it is proposed that the spatiotemporal asymmetry that is specific to each participant may need to be augmented beyond what he or she usually has during walking in order to promote awareness of asymmetric gait patterns for long-term correction and learning.


2021 ◽  
Author(s):  
Ziad M. Hafed

The primate superior colliculus (SC) contains a topographic map of visual field locations, such that the anatomical location of any given active neuron defines a desired eye movement amplitude and direction. Complementing such a spatial code, SC neurons also exhibit saccade-related bursts that are tightly synchronized with movement onset. Current models suggest that such bursts, and their properties, constitute a temporal rate code that may dictate moment-to-moment movement evolution. However, a recent result demonstrated altered movement properties with minimal changes in SC motor burst strengths (Buonocore, Tian, Khademi, & Hafed, 2021). Here, I support such a dissociation between the SC temporal rate code and instantaneous movement evolution: SC burst strength varies depending on whether saccades are directed towards the upper or lower visual fields, but the movements themselves have similar kinematics. Thus, SC saccade-related motor bursts do not necessarily dictate movement kinematics, motivating investigating other possible functional roles for these bursts.


Sign in / Sign up

Export Citation Format

Share Document