scholarly journals SK (KCa2) Channels Do Not Control Somatic Excitability in CA1 Pyramidal Neurons But Can Be Activated by Dendritic Excitatory Synapses and Regulate Their Impact

2008 ◽  
Vol 100 (5) ◽  
pp. 2589-2604 ◽  
Author(s):  
Ning Gu ◽  
Hua Hu ◽  
Koen Vervaeke ◽  
Johan F. Storm

Calcium-activated K+ channels of the KCa2 type (SK channels) are prominently expressed in the mammalian brain, including hippocampus. These channels are thought to underlie neuronal excitability control and have been implicated in plasticity, memory, and neural disease. Contrary to previous reports, we found that somatic spike-evoked medium afterhyperpolarizations (mAHPs) and corresponding excitability control were not caused by SK channels but mainly by Kv7/KCNQ/M channels in CA1 hippocampal pyramidal neurons. Thus apparently, these SK channels are hardly activated by somatic Na+ spikes. To further test this conclusion, we used sharp electrode, whole cell, and perforated-patch recordings from rat CA1 pyramidal neurons. We found that SK channel blockers consistently failed to suppress mAHPs under a range of experimental conditions: mAHPs following single spikes or spike trains, at −60 or −80 mV, at 20–30°C, in low or elevated extracellular [K+], or spike trains triggered by synaptic stimulation after blocking N-methyl-d-aspartic acid receptors (NMDARs). Nevertheless, we found that SK channels in these cells were readily activated by artificially enhanced Ca2+ spikes, and an SK channel opener (1-ethyl-2-benzimidazolinone) enhanced somatic AHPs following Na+ spikes, thus reducing excitability. In contrast to CA1 pyramidal cells, bursting pyramidal cells in the subiculum showed a Na+ spike-evoked mAHP that was reduced by apamin, indicating cell-type-dependent differences in mAHP mechanisms. Testing for other SK channel functions in CA1, we found that field excitatory postsynaptic potentials mediated by NMDARs were enhanced by apamin, supporting the idea that dendritic SK channels are activated by NMDAR-dependent calcium influx. We conclude that SK channels in rat CA1 pyramidal cells can be activated by NMDAR-mediated synaptic input and cause feedback regulation of synaptic efficacy but are normally not appreciably activated by somatic Na+ spikes in this cell type.

2020 ◽  
Author(s):  
Inês Guerreiro ◽  
Zhenglin Gu ◽  
Jerrel L. Yakel ◽  
Boris S. Gutkin

AbstractHippocampal synaptic plasticity, particularly in the Schaffer collateral (SC) to CA1 pyramidal excitatory transmission, is considered as the cellular mechanism underlying learning. The CA1 pyramidal neurons are embedded in an intricate local circuitry that contains a variety of interneurons. The roles these interneurons play in the regulation of the excitatory synaptic plasticity remains largely understudied. Our recent experiments showed that repeated cholinergic activation of α7 nACh receptors expressed in oriens-lacunosum-moleculare (OLMα2) interneurons could induce LTP in SC-CA1 synapses, likely through disinhibition by inhibiting stratum radiatum (s.r.) interneurons that provide feedforward inhibition onto CA1 pyramidal neurons, revealing a potential mechanism for local interneurons to regulate SC-CA1 synaptic plasticity. Here, we pair in vitro studies with biophysically-based modeling to uncover the mechanisms through which cholinergic-activated GABAergic interneurons can disinhibit CA1 pyramidal cells, and how repeated disinhibition modulates hippocampal plasticity at the excitatory synapses. We found that α7 nAChR activation increases OLM activity. OLM neurons, in turn inhibit the fast-spiking interneurons that provide feedforward inhibition onto CA1 pyramidal neurons. This disinhibition, paired with tightly timed SC stimulation, can induce potentiation at the excitatory synapses of CA1 pyramidal neurons. Our work further describes the pairing of disinhibition with SC stimulation as a general mechanism for the induction of hippocampal synaptic plasticity.Disinhibition of the excitatory synapses, paired with SC stimulation, leads to increased NMDAR activation and intracellular calcium concentration sufficient to upregulate AMPAR permeability and potentiate the synapse. Repeated paired disinhibition of the excitatory synapse leads to larger and longer lasting increases of the AMPAR permeability. Our study thus provides a novel mechanism for inhibitory interneurons to directly modify glutamatergic synaptic plasticity. In particular, we show how cholinergic action on OLM interneurons can down-regulate the GABAergic signaling onto CA1 pyramidal cells, and how this shapes local plasticity rules. We identify paired disinhibition with SC stimulation as a general mechanism for the induction of hippocampal synaptic plasticity.


2000 ◽  
Vol 83 (3) ◽  
pp. 1756-1759 ◽  
Author(s):  
John M. Bekkers

This work was designed to localize the Ca2+-activated K+ channels underlying the slow afterhyperpolarization (sAHP) in hippocampal CA1 pyramidal cells. Cell-attached patches on the proximal 100 μm of the apical dendrite contained K+ channels, but not sAHP channels, activated by backpropagating action potentials. Amputation of the apical dendrite ∼30 μm from the soma, while simultaneously recording the sAHP whole cell current at the soma, depressed the sAHP amplitude by only ∼30% compared with control. Somatic cell-attached and nucleated patches did not contain sAHP current. Amputation of the axon ≥20 μm from the soma had little effect on the amplitude of the sAHP recorded in cortical pyramidal cells. By this process of elimination, it is suggested that sAHP channels may be concentrated in the basal dendrites of CA1 pyramids.


1974 ◽  
Vol 52 (5) ◽  
pp. 966-971 ◽  
Author(s):  
B. H. Bland ◽  
G. K. Kostopoulos ◽  
J. W. Phillis

Microiontophoretic application of acetylcholine to neurons in the CA1 pyramidal and dentate granule layers of the rabbit hippocampus revealed differences both in the number of cells excited and the nature of the excitation in the two populations of neurons. A smaller percentage (35.7%) of CA1 pyramidal neurons were found to be excited by acetylcholine, compared with the percentage (92.3%) of dentate granule cells excited. Excitation of CA1 pyramidal cells was slow in onset and antagonized by atropine. Excitation of dentate granule cells was rapid in onset and atropine did not specifically antagonize the action of acetylcholine on these cells.


2021 ◽  
Author(s):  
Carol Upchurch ◽  
Crescent L. Combe ◽  
Christopher Knowlton ◽  
Valery G. Rousseau ◽  
Sonia Gasparini ◽  
...  

The hippocampus is involved in memory and spatial navigation. Many CA1 pyramidal cells function as place cells, increasing their firing rate when a specific place field is traversed. The dependence of CA1 place cell firing on position within the place field is asymmetric. We investigated the source of this asymmetry by injecting triangular depolarizing current ramps to approximate the spatially-tuned, temporally-diffuse depolarizing synaptic input received by these neurons while traversing a place field. Ramps were applied to rat CA1 pyramidal neurons in vitro (slice electrophysiology) and in silico (multi-compartmental NEURON model). Under control conditions, CA1 neurons fired more action potentials at higher frequencies on the up-ramp versus the down-ramp. This effect was more pronounced for dendritic compared to somatic ramps. We incorporated a five-state Markov scheme for NaV1.6 channels into our model and calibrated the spatial dependence of long-term inactivation according to the literature; this spatial dependence was sufficient to explain the difference in dendritic versus somatic ramps. Long-term inactivation reduced the firing frequency by decreasing open-state occupancy, and reduced spike amplitude during trains by decreasing occupancy in closed states, which comprise the available pool. PKC activators like phorbol ester phorbol-dibutyrate (PDBu) are known to reduce NaV long-term inactivation. PDBu application removed spike amplitude attenuation during spike trains in vitro, more visibly in dendrites, consistent with decreased NaV long-term inactivation. Moreover, PDBu greatly reduced adaptation, consistent with our hypothesized mechanism. Our synergistic experimental/computational approach shows that long-term inactivation of NaV1.6 is the primary mechanism of adaptation in CA1 pyramidal cells.


2002 ◽  
Vol 87 (2) ◽  
pp. 1169-1174 ◽  
Author(s):  
Yoshikazu Isomura ◽  
Yoko Fujiwara-Tsukamoto ◽  
Michiko Imanishi ◽  
Atsushi Nambu ◽  
Masahiko Takada

Low concentration of Ni2+, a T- and R-type voltage-dependent calcium channel (VDCC) blocker, is known to inhibit the induction of long-term potentiation (LTP) in the hippocampal CA1 pyramidal cells. These VDCCs are distributed more abundantly at the distal area of the apical dendrite than at the proximal dendritic area or soma. Therefore we investigated the relationship between the Ni2+-sensitivity of LTP induction and the synaptic location along the apical dendrite. Field potential recordings revealed that 25 μM Ni2+ hardly influenced LTP at the proximal dendritic area (50 μm distant from the somata). In contrast, the same concentration of Ni2+ inhibited the LTP induction mildly at the middle dendritic area (150 μm) and strongly at the distal dendritic area (250 μm). Ni2+ did not significantly affect either the synaptic transmission at the distal dendrite or the burst-firing ability at the soma. However, synaptically evoked population spikes recorded near the somata were slightly reduced by Ni2+ application, probably owing to occlusion of dendritic excitatory postsynaptic potential (EPSP) amplification. Even when the stimulating intensity was strengthened sufficiently to overcome such a reduction in spike generation during LTP induction, the magnitude of distal LTP was not significantly recovered from the Ni2+-dependent inhibition. These results suggest that Ni2+ may inhibit the induction of distal LTP directly by blocking calcium influx through T- and/or R-type VDCCs. The differentially distributed calcium channels may play a critical role in the induction of LTP at dendritic synapses of the hippocampal pyramidal cells.


2002 ◽  
Vol 88 (1) ◽  
pp. 107-116 ◽  
Author(s):  
David R. Ireland ◽  
Wickliffe C. Abraham

Previous studies have implicated phospholipase C (PLC)-linked Group I metabotropic glutamate receptors (mGluRs) in regulating the excitability of hippocampal CA1 pyramidal neurons. We used intracellular recordings from rat hippocampal slices and specific antagonists to examine in more detail the mGluR receptor subtypes and signal transduction mechanisms underlying this effect. Application of the Group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) suppressed slow- and medium-duration afterhyperpolarizations (s- and mAHP) and caused a consequent increase in cell excitability as well as a depolarization of the membrane and an increase in input resistance. Interestingly, with the exception of the suppression of the mAHP, these effects were persistent, and in the case of the sAHP lasting for more than 1 h of drug washout. Preincubation with the specific mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), reduced but did not completely prevent the effects of DHPG. However, preincubation with both MPEP and the mGluR1 antagonist LY367385 completely prevented the DHPG-induced changes. These results demonstrate that the DHPG-induced changes are mediated partly by mGluR5 and partly by mGluR1. Because Group I mGluRs are linked to PLC via G-protein activation, we also investigated pathways downstream of PLC activation, using chelerythrine and cyclopiazonic acid to block protein kinase C (PKC) and inositol 1,4,5-trisphosphate-(IP3)-activated Ca2+ stores, respectively. Neither inhibitor affected the DHPG-induced suppression of the sAHP or the increase in excitability nor did an inhibitor of PLC itself, U-73122. Taken together, these results argue that in CA1 pyramidal cells in the adult rat, DHPG activates mGluRs of both the mGluR5 and mGluR1 subtypes, causing a long-lasting suppression of the sAHP and a consequent persistent increase in excitability via a PLC-, PKC-, and IP3-independent transduction pathway.


2002 ◽  
Vol 87 (3) ◽  
pp. 1395-1403 ◽  
Author(s):  
Ayako M. Watabe ◽  
Holly J. Carlisle ◽  
Thomas J. O'Dell

Activation of metabotropic glutamate receptors (mGluRs) with the group I mGluR selective agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) induces a long-term depression (LTD) of excitatory synaptic transmission in the CA1 region of the hippocampus. Here we investigated the potential roles of pre- and postsynaptic processes in the DHPG-induced LTD at excitatory synapses onto hippocampal pyramidal cells in the mouse hippocampus. Activation of mGluRs with DHPG, but not ACPD, induced LTD at both Schaffer collateral/commissural fiber synapses onto CA1 pyramidal cells and at associational/commissural fiber synapses onto CA3 pyramidal cells. DHPG-induced LTD was blocked when the G-protein inhibitor guanosine-5′- O-(2-thiodiphosphate) was selectively delivered into postsynaptic CA1 pyramidal cells via an intracellular recording electrode, suggesting that DHPG depresses synaptic transmission through a postsynaptic, GTP-dependent signaling pathway. The effects of DHPG were also strongly modulated, however, by experimental manipulations that altered presynaptic calcium influx. In these experiments, we found that elevating extracellular Ca2+ concentrations ([Ca2+]o) to 6 mM almost completely blocked the effects of DHPG, whereas lowering [Ca2+]o to 1 mM significantly enhanced the ability of DHPG to depress synaptic transmission. Enhancing Ca2+ influx by prolonging action potential duration with bath applications of the K+ channel blocker 4-aminopyridine (4-AP) also strongly reduced the effects of DHPG in the presence of normal [Ca2+]o (2 mM). Although these findings indicate that alterations in Ca2+-dependent signaling processes strongly regulate the effects of DHPG on synaptic transmission, they do not distinguish between potential pre- versus postsynaptic sites of action. We found, however, that while inhibiting both pre- and postsynaptic K+ channels with bath-applied 4-AP blocked the effects of DHPG; inhibition of postsynaptic K+channels alone with intracellular Cs+ and TEA had no effect on the ability of DHPG to inhibit synaptic transmission. This suggests that presynaptic changes in transmitter release contribute to the depression of synaptic transmission by DHPG. Consistent with this, DHPG induced a persistent depression of both AMPA and N-methyl-d-aspartate receptor-mediated components of excitatory postsynaptic currents in voltage-clamped pyramidal cells. Together our results suggest that activation of postsynaptic mGluRs suppresses transmission at excitatory synapses onto CA1 pyramidal cells through presynaptic effects on transmitter release.


2014 ◽  
Vol 112 (2) ◽  
pp. 263-275 ◽  
Author(s):  
Hayley A. Mattison ◽  
Ashish A. Bagal ◽  
Michael Mohammadi ◽  
Nisha S. Pulimood ◽  
Christian G. Reich ◽  
...  

GluA2-lacking, calcium-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) have unique properties, but their presence at excitatory synapses in pyramidal cells is controversial. We have tested certain predictions of the model that such receptors are present in CA1 cells and show here that the polyamine spermine, but not philanthotoxin, causes use-dependent inhibition of synaptically evoked excitatory responses in stratum radiatum, but not s. oriens, in cultured and acute hippocampal slices. Stimulation of single dendritic spines by photolytic release of caged glutamate induced an N-methyl-d-aspartate receptor-independent, use- and spermine-sensitive calcium influx only at apical spines in cultured slices. Bath application of glutamate also triggered a spermine-sensitive influx of cobalt into CA1 cell dendrites in s. radiatum. Responses of single apical, but not basal, spines to photostimulation displayed prominent paired-pulse facilitation (PPF) consistent with use-dependent relief of cytoplasmic polyamine block. Responses at apical dendrites were diminished, and PPF was increased, by spermine. Intracellular application of pep2m, which inhibits recycling of GluA2-containing AMPARs, reduced apical spine responses and increased PPF. We conclude that some calcium-permeable, polyamine-sensitive AMPARs, perhaps lacking GluA2 subunits, are present at synapses on apical dendrites of CA1 pyramidal cells, which may allow distinct forms of synaptic plasticity and computation at different sets of excitatory inputs.


Sign in / Sign up

Export Citation Format

Share Document