scholarly journals The Influence of Motor Training on Human Express Saccade Production

2009 ◽  
Vol 102 (6) ◽  
pp. 3101-3110 ◽  
Author(s):  
Raquel Bibi ◽  
Jay A. Edelman

Express saccadic eye movements are saccades of extremely short latency. In monkey, express saccades have been shown to occur much more frequently when the monkey has been trained to make saccades in a particular direction to targets that appear in predictable locations. Such results suggest that express saccades occur in large number only under highly specific conditions, leading to the view that vector-specific training and motor preparatory processes are required to make an express saccade of a particular magnitude and direction. To evaluate this hypothesis in humans, we trained subjects to make saccades quickly to particular locations and then examined whether the frequency of express saccades depended on training and the number of possible target locations. Training significantly decreased saccade latency and increased express saccade production to both trained and untrained locations. Increasing the number of possible target locations (two vs. eight possible targets) led to only a modest increase of saccade latency. For most subjects, the probability of express saccade occurrence was much higher than that expected if vector-specific movement preparation were necessary for their production. These results suggest that vector-specific motor preparation and vector-specific saccade training are not necessary for express saccade production in humans and that increases in express saccade production are due in part to a facilitation in fixation disengagement or else a general enhancement in the ability of the saccadic system to respond to suddenly appearing visual stimuli.

2020 ◽  
Author(s):  
Steven P. Errington ◽  
Jeffrey D. Schall

ABSTRACTExpress saccades are unusually short latency, visually guided saccadic eye movements. They are most commonly observed when the fixation spot disappears at a consistent, short interval before a target spot appears at a repeated location. The saccade countermanding task includes no fixation-target gap, variable target presentation times, and the requirement to withhold saccades on some trials. These testing conditions should discourage production of express saccades. However, two macaque monkeys performing the saccade countermanding task produced consistent, multimodal distributions of saccadic latencies. These distributions consisted of a longer mode extending from 200 ms to as much as 600 ms after target presentation and another consistently less than 100 ms after target presentation. Simulations revealed that by varying express saccade production, monkeys could earn more reward. If express saccades were not rewarded, they were rarely produced. The distinct mechanisms producing express and longer saccade latencies were revealed further by the influence of regularities in the duration of the fixation interval preceding target presentation on saccade latency. Temporal expectancy systematically affected the latencies of regular but not of express saccades. This study highlights that cognitive control can integrate information across trials and strategically elicit intermittent very short latency saccades to acquire more reward.


2005 ◽  
Vol 93 (3) ◽  
pp. 1718-1729 ◽  
Author(s):  
Neeraj J. Gandhi ◽  
Desiree K. Bonadonna

Following the initial, sensory response to stimulus presentation, activity in many saccade-related burst neurons along the oculomotor neuraxis is observed as a gradually increasing low-frequency discharge hypothesized to encode both timing and metrics of the impending eye movement. When the activity reaches an activation threshold level, these cells discharge a high-frequency burst, inhibit the pontine omnipause neurons (OPNs) and trigger a high-velocity eye movement known as saccade. We tested whether early cessation of OPN activity, prior to when it ordinarily pauses, acts to effectively lower the threshold and prematurely trigger a movement of modified metrics and/or dynamics. Relying on the observation that OPN discharge ceases during not only saccades but also blinks, air-puffs were delivered to one eye to evoke blinks as monkeys performed standard oculomotor tasks. We observed a linear relationship between blink and saccade onsets when the blink occurred shortly after the cue to initiate the movement but before the average reaction time. Blinks that preceded and overlapped with the cue increased saccade latency. Blinks evoked during the overlap period of the delayed saccade task, when target location is known but a saccade cannot be initiated for correct performance, failed to trigger saccades prematurely. Furthermore, when saccade and blink execution coincided temporally, the peak velocity of the eye movement was attenuated, and its initial velocity was correlated with its latency. Despite the perturbations, saccade accuracy was maintained across all blink times and task types. Collectively, these results support the notion that temporal features of the low-frequency activity encode aspects of a premotor command and imply that inhibition of OPNs alone is not sufficient to trigger saccades.


1996 ◽  
Vol 76 (2) ◽  
pp. 908-926 ◽  
Author(s):  
J. A. Edelman ◽  
E. L. Keller

1. We recorded visuomotor burst neurons in the deeper layers of the superior colliculus while two monkeys (Macaca fascicularis) made short-latency saccades known as express saccades to visual targets in order to determine whether the visual discharge normally seen for these cells served as the premotor burst during express saccades. We then compared saccade-related activity during express saccades with that recorded during regular latency saccades and delayed saccades. 2. Saccade latency histograms for two monkeys during trials with a temporal gap between fixation-point offset and target onset showed a distinct peak of saccades around 70-80 ms. One monkey also showed an additional peak around 125 ms. 3. Express saccades were found on the average to have the same relationship of saccade peak velocity to saccade amplitude as regular latency saccades and delayed saccades. Express saccades tended to be somewhat more hypometric than the other classes of saccades. However, express saccades were clearly visually guided and not anticipatory responses. 4. For most cells studied (33/40), express saccades were accompanied by a single, uninterrupted burst of activity beginning 40-50 ms after target onset and continuing until sometime around the end of the saccade. For a smaller group of cells (7/40), two peaks of burst activity were seen, although the second peak was smaller and tended to occur late, after saccade onset. Across all cells, the peak of visuomotor cell activity during express saccades correlated just as well with target onset as it did with saccade onset. 5. When considered as discharge temporally aligned to the onset of the saccade, bursts accompanying express saccades tended to begin at approximately the same time as that for regular and delayed saccades. However, this discharge generally peaked earlier for express than for regular and delayed saccades. Also, the magnitude of discharge for express saccades was higher than that for delayed saccades throughout the burst. 6. When considered as discharge temporally aligned to the appearance of the target, bursts began earlier for express and regular saccade trials than for delayed saccade trials. Peak discharge tended to be greater for express saccades than for the other classes of saccades. 7. The results of this investigation are consistent with the suggestion that the visual burst of visuomotor neurons in the deeper layers of the superior colliculus plays a role in the initiation of express saccades similar to that played by the premotor burst for saccades of longer latency. The elevated discharge for express saccades supports the idea that the superior colliculus plays a more critical role in express saccade generation than in the generation of longer-latency saccades. The elevated discharge also suggests that visuomotor bursters do not code one-to-one for saccade velocity nor for saccade dynamic motor error.


2016 ◽  
Vol 113 (24) ◽  
pp. 6743-6748 ◽  
Author(s):  
Nathan J. Hall ◽  
Carol L. Colby

A key structure for directing saccadic eye movements is the superior colliculus (SC). The visual pathways that project to the SC have been reported to carry only luminance information and not color information. Short-wavelength–sensitive cones (S-cones) in the retina make little or no contribution to luminance signals, leading to the conclusion that S-cone stimuli should be invisible to SC neurons. The premise that S-cone stimuli are invisible to the SC has been used in numerous clinical and human psychophysical studies. The assumption that the SC cannot use S-cone stimuli to guide behavior has never been tested. We show here that express saccades, which depend on the SC, can be driven by S-cone input. Further, express saccade reaction times and changes in SC activity depend on the amount of S-cone contrast. These results demonstrate that the SC can use S-cone stimuli to guide behavior. We conclude that the use of S-cone stimuli is insufficient to isolate SC function in psychophysical and clinical studies of human subjects.


1996 ◽  
Vol 76 (6) ◽  
pp. 3666-3681 ◽  
Author(s):  
M. Pare ◽  
D. P. Munoz

1. The introduction of a period of darkness between the disappearance of an initial fixation target and the appearance of a peripheral saccade target produces a general reduction in saccadic reaction time (SRT)-known as the gap effect- and often very short latency express saccades. To account for these phenomena, premotor processes may be facilitated by release of visual fixation and advanced preparation of saccadic programs. The experiments described in this paper were designed to test the relevance of the ocular fixation disengagement and oculomotor preparation hypotheses by identifying the influence of different factors on SRTs and the occurrence of express saccades in the monkey. 2. The SRTs of two monkeys were measured in two behavioral paradigms. A peripheral saccade target appeared at the time of disappearance of a central fixation target in the no-gap task, whereas a 200-ms period of no stimuli was interposed between the fixation target disappearance and the saccade target appearance in the gap task. The distribution of SRTs in these tasks was generally bimodal; the first and second mode was composed of express and regular saccades, respectively. We measured the mean SRT, mean regular saccade latency, mean express saccade latency, and percentage of express saccades in both tasks. We also estimated the gap effect, i.e., the difference between the SRTs in no-gap trial and the SRTs in gap trials. 3. Once the animals were trained to make saccades to a single target location and produce express saccades, SRTs in both no-gap and gap trials displayed a broad tuning with respect to the spatial location of the trained target when the target location was varied randomly in a block of trials. Express saccades were made only to a restricted region of the visual field surrounding the trained target location. A gap effect was present for nearly all target locations tested, irrespective of express saccade occurrence. Finally, the probability of generating an express saccade at the trained target location decreased with the introduction of uncertainty about target location. 4. The occurrence of express saccades increased with the duration of the visual and nonvisual (gap) fixation that the animal was required to maintain before the onset of a saccade target. The gap duration was effective in reducing the mean SRT for gaps < or = 300 ms, and it was more influential than comparable variation in the visual fixation duration. 5. The occurrence of express saccades made to targets of identical eccentricity increased when the initial eye fixation position was shifted eccentric in a direction opposite to the saccade direction. Concomitantly, mean SRT decreased by approximately 2 ms for each 1-deg change in initial eye fixation position. 6. The occurrence of express saccades depended upon contextual factors, i.e., on both the behavioral task (no-gap or gap) and the latency of the saccade that the monkey executed to the same target in the preceding trial. The highest percentage of express saccades was observed after an express saccade in a no-gap trial, whereas the lowest percentage was obtained after a regular saccade in a gap trial. 7. These findings indicate that training-dependent express saccades are restricted to a specific spatial location dictated by the training target, and their incidence is facilitated by high predictability of target presentation, long-duration foreperiod, absence of visual fixation, eccentric initial eye position opposite to the saccade direction, and express saccade occurrence in the previous trial. The release of fixation afforded by the gap accounts for the general gap effect, but has only a modulatory influence on express saccade generation. We conclude that advanced motor preparation of saccadic programs generally reduces SRT and is primarily responsible for the occurrence of express saccades, which therefore may be caused mainly by neuronal changes restricted to a specific locus-coding for the trained movemen


2004 ◽  
Vol 21 (2) ◽  
pp. 119-127 ◽  
Author(s):  
PETER H. SCHILLER ◽  
JOHANNES HAUSHOFER ◽  
GEOFFERY KENDALL

The frequency with which express saccades are generated under a variety of conditions in rhesus monkeys was examined. Increasing the gap time between fixation spot termination and target onset increased express saccade frequency but was progressively less effective in doing so as the number of target positions in the sample was increased. Express saccades were rarely produced when two targets were presented simultaneously and the choice of either of which was rewarded; a temporal asynchrony of only 17 ms between the targets reinstated express saccade generation. Express saccades continued to be generated when the vergence or pursuit systems was coactivated with the saccadic system.


2015 ◽  
Vol 12 (3) ◽  
pp. 036014 ◽  
Author(s):  
Shogo Ohmae ◽  
Toshimitsu Takahashi ◽  
Xiaofeng Lu ◽  
Yasunori Nishimori ◽  
Yasushi Kodaka ◽  
...  

2020 ◽  
Vol 124 (6) ◽  
pp. 1656-1666
Author(s):  
Pierre Vassiliadis ◽  
Gerard Derosiere ◽  
Julien Grandjean ◽  
Julie Duque

Movement preparation involves a broad suppression in the excitability of the corticospinal pathway, a phenomenon called preparatory suppression. Here, we show that motor training strengthens preparatory suppression and that this strengthening is associated with faster reaction times. Our findings highlight a key role of preparatory suppression in training-driven behavioral improvements.


Perception ◽  
1994 ◽  
Vol 23 (1) ◽  
pp. 45-64 ◽  
Author(s):  
Monica Biscaldi ◽  
Burkhart Fischer ◽  
Franz Aiple

Twenty-four children made saccades in five noncognitive tasks. Two standard tasks required saccades to a single target presented randomly 4 deg to the right or left of a fixation point. Three other tasks required sequential saccades from the left to the right. 75 parameters of the eye-movement data were collected for each child. On the basis of their reading, writing, and other cognitive performances, twelve children were considered dyslexic and were divided into two groups (D1 and D2). Group statistical comparisons revealed significant differences between control and dyslexic subjects. In general, in the standard tasks the dyslexic subjects had poorer fixation quality, failed more often to hit the target at once, had smaller primary saccades, and had shorter reaction times to the left as compared with the control group. The control group and group D1 dyslexics showed an asymmetrical distribution of reaction times, but in opposite directions. Group D2 dyslexics made more anticipatory and express saccades, they undershot the target more often in comparison with the control group, and almost never overshot it. In the sequential tasks group D1 subjects made fewer and larger saccades in a shorter time and group D2 subjects had shorter fixation durations than the subjects of the control group.


2007 ◽  
Vol 97 (1) ◽  
pp. 795-805 ◽  
Author(s):  
Casimir J. H. Ludwig ◽  
John W. Mildinhall ◽  
Iain D. Gilchrist

During movement programming, there is a point in time at which the movement system is committed to executing an action with certain parameters even though new information may render this action obsolete. For saccades programmed to a visual target this period is termed the dead time. Using a double-step paradigm, we examined potential variability in the dead time with variations in overall saccade latency and spatiotemporal configuration of two sequential targets. In experiment 1, we varied overall saccade latency by manipulating the presence or absence of a central fixation point. Despite a large and robust gap effect, decreasing the saccade latency in this way did not alter the dead time. In experiment 2, we varied the separation between the two targets. The dead time increased with separation up to a point and then leveled off. A stochastic accumulator model of the oculomotor decision mechanism accounts comprehensively for our findings. The model predicts a gap effect through changes in baseline activity without producing variations in the dead time. Variations in dead time with separation between the two target locations are a natural consequence of the population coding assumption in the model.


Sign in / Sign up

Export Citation Format

Share Document