Loss of Potassium Homeostasis Underlies Hyperthermic Conduction Failure in Control and Preconditioned Locusts

2009 ◽  
Vol 102 (1) ◽  
pp. 285-293 ◽  
Author(s):  
Tomas G. A. Money ◽  
Corinne I. Rodgers ◽  
Stuart M. K. McGregor ◽  
R. Meldrum Robertson

At extreme temperature, neurons cease to function appropriately. Prior exposure to a heat stress (heat shock [HS]) can extend the temperature range for action potential conduction in the axon, but how this occurs is not well understood. Here we use electrophysiological recordings from the axon of a locust visual interneuron, the descending contralateral movement detector (DCMD), to examine what physiological changes result in conduction failure and what modifications allow for the observed plasticity following HS. We show that at high temperature, conduction failure in the DCMD occurred preferentially where the axon passes through the thoracic ganglia rather than in the connective. Although the membrane potential hyperpolarized with increasing temperature, we observed a modest depolarization (3–6 mV) in the period preceding the failure. Prior to the conduction block, action potential amplitude decreased and half-width increased. Both of these failure-associated effects were attenuated following HS. Extracellular potassium concentration ([K+]o) increased sharply at failure and the failure event could be mimicked by the application of high [K+]o. Surges in [K+]o were muted following HS, suggesting that HS may act to stabilize ion distribution. Indeed, experimentally increased [K+]o lowered failure temperature significantly more in control animals than in HS animals and experimentally maintained [K+]o was found to be protective. We suggest that the more attenuated effects of failure on the membrane properties of the DCMD axon in HS animals is consistent with a decrease in the disruptive nature of the [K+]o-dependent failure event following HS and thus represents an adaptive mechanism to cope with thermal stress.

Author(s):  
Jesús Carro ◽  
José Félix Rodríguez ◽  
Pablo Laguna ◽  
Esther Pueyo

In this study, several modifications were introduced to a recently proposed human ventricular action potential (AP) model so as to render it suitable for the study of ventricular arrhythmias. These modifications were driven by new sets of experimental data available from the literature and the analysis of several well-established cellular arrhythmic risk biomarkers, namely AP duration at 90 per cent repolarization (APD 90 ), AP triangulation, calcium dynamics, restitution properties, APD 90 adaptation to abrupt heart rate changes, and rate dependence of intracellular sodium and calcium concentrations. The proposed methodology represents a novel framework for the development of cardiac cell models. Five stimulation protocols were applied to the original model and the ventricular AP model developed here to compute the described arrhythmic risk biomarkers. In addition, those models were tested in a one-dimensional fibre in which hyperkalaemia was simulated by increasing the extracellular potassium concentration, [K + ] o . The effective refractory period (ERP), conduction velocity (CV) and the occurrence of APD alternans were investigated. Results show that modifications improved model behaviour as verified by: (i) AP triangulation well within experimental limits (the difference between APD at 50 and 90 per cent repolarization being 78.1 ms); (ii) APD 90 rate adaptation dynamics characterized by fast and slow time constants within physiological ranges (10.1 and 105.9 s); and (iii) maximum S1S2 restitution slope in accordance with experimental data ( S S1S2 =1.0). In simulated tissues under hyperkalaemic conditions, APD 90 progressively shortened with the degree of hyperkalaemia, whereas ERP increased once a threshold in [K + ] o was reached ([K + ] o ≈6 mM). CV decreased with [K + ] o , and conduction was blocked for [K + ] o >10.4 mM. APD 90 alternans were observed for [K + ] o >9.8 mM. Those results adequately reproduce experimental observations. This study demonstrated the value of basing the development of AP models on the computation of arrhythmic risk biomarkers, as opposed to joining together independently derived ion channel descriptions to produce a whole-cell AP model, with the new framework providing a better picture of the model performance under a variety of stimulation conditions. On top of replicating experimental data at single-cell level, the model developed here was able to predict the occurrence of APD 90 alternans and areas of conduction block associated with high [K + ] o in tissue, which is of relevance for the investigation of the arrhythmogenic substrate in ischaemic hearts.


1976 ◽  
Vol 39 (6) ◽  
pp. 1184-1192 ◽  
Author(s):  
W. R. Schlue

1. The sensory neurons in the leech central nervous system differ in their accommodation to linearly rising currents. Advantage was taken of these differences to study the ionic mechanism of accommodation in single pairs of N (noxious), P (pressure), and T (touch) cells. 2. Nonlinearities in membrane-potential changes and current-voltage relationships with square-wave and ramp currents are more pronounced in P and T cells than in N cells. The accommodation coefficients increase in conditions that reflect this delayed rectification. When rectification is absent, the accommodation coefficients depart from unity only slightly or not at all. 3. Accommodation coefficients remain unchanged when half of the chloride in the bathing medium is replaced by sulfate. Accommodation coefficients become greater when the extracellular potassium concentration is reduced from 4 to 0 mM, and decrease when the concentration is raised to 8 mM. The membrane potential changes by only a few millivolts. 4. As extracellular potassium concentration is increased, the action potential is lengthened and the maximal rate of fall of the action potential is reduced. With concentrations greater than 4 mM these relationships are linear, but depart from linearity at lower concentrations. The amplitude of the undershoot decreases linearly as the extracellular potassium concentration increases from 4 to 16 mM, and increases non-linearly at concentrations below 4 mM. 5. The rapid accommodation of leech neurons is based primarily on an increased potassium conductance. The possibility is considered that concentration changes like those produced experimentally may occur naturally, affecting integrative processes in the central nervous system.


2016 ◽  
Vol 26 (08) ◽  
pp. 1650044 ◽  
Author(s):  
Lihua Wang ◽  
Suzie Dufour ◽  
Taufik A. Valiante ◽  
Peter L. Carlen

Seizure activity leads to increases in extracellular potassium concentration ([K[Formula: see text]]o), which can result in changes in neuronal passive and active membrane properties as well as in population activities. In this study, we examined how extracellular potassium modulates seizure activities using an acute 4-AP induced seizure model in the neocortex, both in vivo and in vitro. Moderately elevated [K[Formula: see text]]o up to 9[Formula: see text]mM prolonged seizure durations and shortened interictal intervals as well as depolarized the neuronal resting membrane potential (RMP). However, when [K[Formula: see text]]o reached higher than 9[Formula: see text]mM, seizure like events (SLEs) were blocked and neurons went into a depolarization-blocked state. Spreading depression was never observed as the blockade of ictal events could be reversed within 1–2[Formula: see text]min after the raised [K[Formula: see text]]o was changed back to control levels. This concentration-dependent dual effect of [K[Formula: see text]]o was observed using in vivo and in vitro mouse brain preparations as well as in human neocortical tissue resected during epilepsy surgery. Blocking the Ih current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, modulated the elevated [K[Formula: see text]]o influence on SLEs by promoting the high [K[Formula: see text]]o inhibitory actions. These results demonstrate biphasic actions of raised [K[Formula: see text]]o on neuronal excitability and seizure activity.


1980 ◽  
Vol 75 (6) ◽  
pp. 633-654 ◽  
Author(s):  
D E Clapham ◽  
A Shrier ◽  
R L DeHaan

Spheroidal aggregates of embryonic chick ventricle cells were brought into contact and allowed to synchronize their spontaneous beats. Action potentials were recorded with both intracellular and extracellular electrodes. The degree of electrical interaction between the newly apposed aggregates was assessed by measuring the delay or latency (L) between the entrained action potentials, and by determining directly interaggregate coupling resistance (Rc) with injected current pulses. Aggregate size, contact area between the aggregates, and extracellular potassium concentration (Ko+) were important variables regulating the time-course of coupling. When these variables were controlled, L and Rc were found to be linearly related after beat synchrony was achieved. In 4.8 mM Ko+ L/Rc = 3.7 ms/M omega; in 1.3 mM Ko+ L/Rc = 10.1 ms/M omega. We conclude that action potential delay between heart cell aggregates can be related quantitatively to Rc.


1978 ◽  
Vol 56 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Teresa Kus ◽  
Betty I. Sasyniuk

We studied the effect of lowering the extracellular potassium concentration ([K+]0) on the electrophysiological actions of disopyramide phosphate, a new antiarrhythmic drug. At low [K+]0, therapeutic concentrations of disopyramide phosphate caused significantly less depression of action potential amplitude and maximum upstroke velocity of both Purkinje fiber and ventricular muscle action potentials. The drug shifted the membrane responsiveness curve along the voltage axis to more negative membrane potentials regardless of [K+]0. However, a greater shift occurred when [K+]0 was normal. Disopyramide phosphate prolonged both action potential duration and effective refractory period in all fibers but there was consistently greater prolongation of these parameters at low [K+]0, More importantly, disopyramide phosphate altered repolarization time course of action potentials in such a way that action potentials with dissimilar durations throughout the ventricular conducting system became more equal. The drug was less effective in decreasing this disparity in action potential durations throughout the ventricles in the presence of low [K+]0. These modifications of the electrophysiological actions of disopyramide by low [K+]0 suggest that a therapeutic concentration of disopyramide might have less of an antiarrhythmic effect in the presence of hypokalemia.


1981 ◽  
Vol 241 (2) ◽  
pp. H139-H144
Author(s):  
S. Ito ◽  
B. Surawicz

Intracellular loading with 20 mM tetraethylammonium chloride (TEA) diffusing through the cut end of the preparations prolonged action potential duration (APD) in dog Purkinje fibers without changing maximum diastolic potential, overshoot, and dV/dtmax. The APD was prolonged at all rates of stimulation, but, contrary to the normal rules, APD increased more after longer than after shorter interstimulus intervals. TEA increased the number of beats required to achieve the new steady-state APD after an abrupt change in the rate of stimulation. The effect of varying extracellular potassium concentration on maximal diastolic potential suggested that intracellular loading with TEA had no effect on the time-independent "background" outward current (IK1). If we ascribe all observed TEA effects to the reduction of time dependent slow outward current Ix1, we can propose a hypothesis concerning the role of Ix1 in the regulation of APD at slow heart rates.


1990 ◽  
Vol 259 (2) ◽  
pp. H290-H299 ◽  
Author(s):  
J. M. Davidenko ◽  
R. J. Levi ◽  
G. Maid ◽  
M. V. Elizari ◽  
M. B. Rosenbaum

It is well known that in most cardiac tissues an increase in rate results in a decrease of excitability and, eventually, conduction block. We used microelectrode techniques to evaluate the rate and time dependence of excitation latency in 27 isolated guinea pig papillary muscles (GPPM). Latency was measured as the interval between the stimulus onset and action potential upstroke. When the intensity of current was just suprathreshold, prolongation of the basic cycle length (BCL) from 300 to 1,000 ms produced an increase in latency or failure of excitation. Such behavior was observed with extracellular as well as intracellular stimulation. Rate-dependent changes in latency were maximal during the first 10-20 s following the rate change and reached a steady state in approximately 200 s. Application of premature beats revealed the presence of a "supernormal phase" in which latency abbreviated. Strength-interval and strength-duration curves demonstrated that changes in excitability accurately paralleled those observed in latency. Hence, supernormal excitability at the end of the phase 3 repolarization was consistently observed in all ventricular muscle experiments. Deceleration-induced decrease of excitability was attended by hyperpolarization, increase of action potential upstroke velocity (Vmax) and action potential amplitude, and decrease in membrane resistance. Our data suggest that paradoxical rate-related changes of excitability in GPPM are the result of changes in the passive membrane properties. Under conditions of depressed conductivity, this particular behavior may account for the occurrence of bradycardia-dependent block.


1984 ◽  
Vol 52 (3) ◽  
pp. 421-434 ◽  
Author(s):  
U. Heinemann ◽  
I. Dietzel

Changes in extracellular K+ concentration [( K+]o) were measured with ion-selective microelectrodes in chronic epileptic foci induced by topical application of A1(OH)3 cream on the sensorimotor cortex of cats. The foci were morphologically characterized by a scar surrounded by an area of marked gliosis. Base-line levels of [K+]o in gliotic tissue and its immediate border zone were comparable to those in normal cortical tissue. Peak levels of [K+]o obtained during repetitive electrical stimulation of the cortical surface and thalamic ventrobasal complex were only slightly enhanced with 11.6 mM in chronic foci and 10.8 mM in normal cortex. Iontophoretic K+ application into gliotic tissue was accompanied by slow negative potential shifts comparable to those observed in normal cortex. Passage of constant current through gliotic tissue caused local [K+]o changes in the vicinity of the current-passing electrode. Since these [K+]o changes were similar to those observed in normal tissue, it was concluded that the amount of transcellularly transported K ions was comparable in both tissues. Changes in the size of extracellular space (ES) were investigated by measuring local concentration changes of iontophoretically injected tetramethylammonium and choline ions. During stimulus-induced seizure activity, the ES shrank outside the gliotic area at sites of maximal [K+]o elevation, while it increased at sites within the gliotic tissue where [K+]o rises were smaller. The results suggest that the spatial buffer capacity of gliotic tissue for K+ is not severely impaired. Since the relationship between rises in [K+]o and subsequent undershoots at sites immediately bordering the gliotic tissue is comparable to that in normal cortex, the ability of this epileptic tissue for active K+ uptake appears to be unaffected. This conclusion is further supported by the observation that iontophoretically induced rises in [K+]o during undershoots are reduced to a similar extent as in normal cortex.


1992 ◽  
Vol 70 (S1) ◽  
pp. S263-S268 ◽  
Author(s):  
H. Steve White ◽  
Sien Yao Chow ◽  
Y. C. Yen-Chow ◽  
Dixon M. Woodbury

Potassium is tightly regulated within the extracellular compartment of the brain. Nonetheless, it can increase 3- to 4-fold during periods of intense seizure activity and 10- to 20-fold under certain pathological conditions such as spreading depression. Within the central nervous system, neurons and astrocytes are both affected by shifts in the extracellular concentration of potassium. Elevated potassium can lead to a redistribution of other ions (e.g., calcium, sodium, chloride, hydrogen, etc.) within the cellular compartment of the brain. Small shifts in the extracellular potassium concentration can markedly affect acid–base homeostasis, energy metabolism, and volume regulation of these two brain cells. Since normal neuronal function is tightly coupled to the ability of the surrounding glial cells to regulate ionic shifts within the brain and since both cell types can be affected by shifts in the extracellular potassium, it is important to characterize their individual response to an elevation of this ion. This review describes the results of side-by-side studies conducted on cortical neurons and astrocytes, which assessed the effect of elevated potassium on their resting membrane potential, intracellular volume, and their intracellular concentration of potassium, sodium, and chloride. The results obtained from these studies suggest that there exists a marked cellular heterogeneity between neurons and astrocytes in their response to an elevation in the extracellular potassium concentration.Key words: astrocytes, neurons, ion concentration, neuronal–glial interactions, mouse, cell culture.


Sign in / Sign up

Export Citation Format

Share Document