Central Pathways Controlling Brown Adipose Tissue Thermogenesis

Physiology ◽  
2004 ◽  
Vol 19 (2) ◽  
pp. 67-74 ◽  
Author(s):  
Shaun F. Morrison

Heat production in brown adipose tissue contributes to cold defense, to stress-induced increases in body temperature, and to energy balance. Elucidating the functional organization of the central network controlling the sympathetic outflow to brown adipose tissue could provide a framework for understanding how dysregulation of thermogenesis contributes to hyperthermia and to obesity.

Endocrinology ◽  
2014 ◽  
Vol 155 (5) ◽  
pp. 1679-1689 ◽  
Author(s):  
Patricia Seoane-Collazo ◽  
Pablo B. Martínez de Morentin ◽  
Johan Fernø ◽  
Carlos Diéguez ◽  
Rubén Nogueiras ◽  
...  

Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.


1986 ◽  
Vol 250 (2) ◽  
pp. R245-R249 ◽  
Author(s):  
D. Richard

This study was carried out to investigate the nutritional energetics of ovariectomized rats with or without ovarian hormone replacement. Rats were divided into five groups: 1) sham operated, 2) ovariectomized, 3) ovariectomized and treated with progesterone, 4) ovariectomized and treated with estradiol, or 5) ovariectomized and treated with estradiol and progesterone. After 36 days of treatment, energy contents of all five groups were determined together with energy content of food and feces. Brown adipose tissue thermogenesis was assessed through mitochondrial GDP binding assay. Results show that ovariectomy leads to a 16% increase in metabolizable energy intake. This increase was accompanied by a twofold increase in body energy gain. Progesterone did not further affect energy intake and gain in ovariectomized rats. However, increases in both food intake and energy gain were prevented by the estradiol replacement therapy. There was no difference in energy expenditure between sham-operated and ovariectomized rats in the absence of estradiol. In estradiol-treated animals, energy expenditure (kJ.kg body wt-0.75 . day-1) showed a slight increase. There was no difference in protein content of interscapular brown adipose tissue between all five groups. GDP binding was slightly reduced in ovariectomized estradiol-treated rats. It is concluded from this study that ovarian hormones produce their effects on energy balance mainly by altering food intake.


1985 ◽  
Vol 248 (5) ◽  
pp. E531-E539 ◽  
Author(s):  
J. Himms-Hagen

Restricting the food intake of the genetically obese (ob/ob) mouse is known to ameliorate its cold intolerance. Cold intolerance of the ob/ob mouse is associated with defective thermogenesis in its brown adipose tissue. The objective of the experiments was to find out whether food restriction could increase the thermogenic function of brown adipose tissue of the ob/ob mouse. Obese and lean mice were fed a restricted amount of chow in one meal per day for 3-7 mo. Both lean and ob/ob mice were torpid (rectal temperature of approximately 32 degrees C) in the early morning and aroused spontaneously to a normal body temperature before the anticipated meal time. Obese mice were also torpid during the dark phase, whereas lean mice were active and had a normal body temperature at this time. Brown adipose tissue was in a thermogenically inactive state (low level of mitochondrial GDP binding) in torpid lean and ob/ob mice but became thermogenically active (increase in mitochondrial GDP binding) during stimulated arousal when body temperature increased by 6-7 degrees C in 15-30 min. Ad libitum-fed ob/ob mice had a normal diurnal rhythm in a rectal temperature that was at a lower level than in lean ad libitum-fed mice. They did not raise their rectal temperatures when stimulated and no activation of brown adipose tissue thermogenesis occurred under these conditions. Food restriction increased the capacity of both lean and ob/ob mice to raise their metabolic rate in response to injection of noradrenaline, indicating an increased capacity for thermogenesis in their brown adipose tissue.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 250 (5) ◽  
pp. R845-R850 ◽  
Author(s):  
G. N. Wade ◽  
G. Jennings ◽  
P. Trayhurn

Energy balance and brown adipose tissue thermogenesis were examined during pregnancy in Syrian hamsters (Mesocricetus auratus). Neither estrous cycles nor pregnancy had any effect on food intake, but both were accompanied by significant changes in body weight. Despite their substantial weight gains (attributable to growth of fetuses and placentas), pregnant hamsters actually lost a mean of 48 kJ in carcass energy, whereas unmated controls gained 98 kJ over the same 15 days. During pregnancy hamsters exhibited an increase in protein deposition (almost entirely in the fetuses and placentas), but they lost nearly 40% of their body lipid. An apparent increase in energy expenditure occurred despite a highly significant decrease in brown adipose tissue thermogenesis during pregnancy. By day 15 of pregnancy (within 13 h of expected parturition) there were substantial decreases in interscapular brown adipose tissue weight (-59%), protein content (-54%), and cytochrome-c oxidase activity (-69%). These changes in brown adipose tissue were evident by day 4 of pregnancy and persisted through lactation. It is suggested that this suppression of brown adipose tissue function is due to increased circulating levels of prolactin and subsequently to the nutritional stress of conceptus growth in the absence of an increase in food intake.


1989 ◽  
Vol 66 (4) ◽  
pp. 1970-1975 ◽  
Author(s):  
J. Arnold ◽  
R. A. Little ◽  
N. J. Rothwell

The effects of continuously administered endotoxin on 7-day energy balance were investigated in male rats. Three groups of rats were implanted with osmotic pumps; two groups received saline-filled pumps, whereas the third received endotoxin. One of the saline groups was pair fed to match the food intake of the endotoxemic rats. After 7 days, body energy and protein and fat contents of rats were determined together with the energy content of food and feces. Endotoxin infusion not only induced fever, but it also suppressed appetite and significantly decreased body weight gain. Metabolizable energy intake was reduced by approximately 20% in infected rats. Although protein and fat gains were lowest in the endotoxin group, there appeared to be a selective loss of protein when considered as percent of body weight. Percent body fat was unaltered between the groups. Energy expenditure considered in absolute (kJ) or body weight-independent (kJ/kg0.67) terms yielded similar patterns of results; expenditure (kJ) was 10 and 20% (P less than 0.05, P less than 0.01) lower in the endotoxemic and pair-fed rats, respectively, compared with controls. Hence, compared with pair-fed rats, endotoxin-infused animals had a 10% rise in their expenditure. Brown adipose tissue thermogenesis was assessed by mitochondrial binding of guanosine 5′-diphosphate, and results showed that binding was greatest in endotoxemic rats and lowest in the pair-fed animals. The present results suggest that in this endotoxemic model appetite suppression exacerbates changes in energy balance. However, the reduction in body weight gain is also dependent on a decrease in metabolic efficiency and an increase in total energy expenditure.(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 307 (8) ◽  
pp. R978-R989 ◽  
Author(s):  
Mazher Mohammed ◽  
Youichirou Ootsuka ◽  
Masashi Yanagisawa ◽  
William Blessing

Thermogenesis in brown adipose tissue (BAT) contributes to substantial increases in body temperature evoked by threatening or emotional stimuli. BAT thermogenesis also contributes to increases in body temperature that occur during active phases of the basic rest-activity cycle (BRAC), as part of normal daily life. Hypothalamic orexin-synthesizing neurons influence many physiological and behavioral variables, including BAT and body temperature. In conscious unrestrained animals maintained for 3 days in a quiet environment (24–26°C) with ad libitum food and water, we compared temperatures in transgenic rats with ablation of orexin neurons induced by expression of ataxin-3 (Orx_Ab) with wild-type (WT) rats. Both baseline BAT temperature and baseline body temperature, measured at the onset of BRAC episodes, were similar in Orx_Ab and WT rats. The time interval between BRAC episodes was also similar in the two groups. However, the initial slopes and amplitudes of BRAC-related increases in BAT and body temperature were reduced in Orx_Ab rats. Similarly, the initial slopes and amplitudes of the increases in BAT temperatures induced by sudden exposure to an intruder rat (freely moving or confined to a small cage) or by sudden exposure to live cockroaches were reduced in resident Orx_Ab rats. Constriction of the tail artery induced by salient alerting stimuli was also reduced in Orx_Ab rats. Our results suggest that orexin-synthesizing neurons contribute to the intensity with which rats interact with the external environment, both when the interaction is “spontaneous” and when the interaction is provoked by threatening or salient environmental events.


2021 ◽  
Author(s):  
Zyanya Díaz-Hirashi ◽  
Tian Gao ◽  
Chiara Scaffidi ◽  
Monika Fey ◽  
Susan Murray ◽  
...  

Abstract Whole-body energy homeostasis is influenced by anabolic and catabolic cellular programs, which depend on environmental and nutritional cues. Adipose tissue plays a predominant role in the physiological regulation of energy balance by either storing or consuming energy through brown adipose tissue thermogenesis. It is however not clearly understood how brown adipose tissue balances catabolic and anabolic states. We show here that the transcription factor YY1 senses energetic state through a post-translational S120 phosphorylation switch. Adrenergic signaling leads to YY1 dephosphorylation which directly activates thermogenesis and a catabolic gene program while its phosphorylation maintains an anabolic program. Mechanistically, YY1 dephosphorylation increases chromatin binding at distal genomic loci respective to the transcription start site but remains constitutively bound to TSS. This mode of transcriptional control influences the activating and repressive function of YY1 and regulates catabolism/anabolism. We show that YY1 interacts with PPP1R3B, a regulatory subunit of the phosphatase PP1 and that in vivo knockdown of PPP1R3B protects against diet-induced obesity and insulin resistance. Our results uncover a novel transcriptional mechanism of metabolism orchestrated by YY1 phosphorylation switch and identifies PPP1R3B as a regulator of energy balance.


Sign in / Sign up

Export Citation Format

Share Document