scholarly journals Adipose Tissue-Derived Stem Cells: Immunomodulatory Effects and Therapeutic Potential

Physiology ◽  
2020 ◽  
Vol 35 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Sara Al-Ghadban ◽  
Bruce A. Bunnell

Adipose-derived stem cells (ASCs) can self-renew and differentiate along multiple cell lineages. ASCs are also potently anti-inflammatory due to their inherent ability to regulate the immune system by secreting anti-inflammatory cytokines and growth factors that play a crucial role in the pathology of many diseases, including multiple sclerosis, diabetes mellitus, Crohn’s, SLE, and graft-versus-host disease. The immunomodulatory effects and mechanisms of action of ASCs on pathological conditions are reviewed here.

2020 ◽  
Vol 15 (7) ◽  
pp. 602-606
Author(s):  
Kun Ji ◽  
Ling Ding ◽  
Xi Chen ◽  
Yun Dai ◽  
Fangfang Sun ◽  
...  

Mesenchymal Stem Cells (MSCs) exhibit enormous therapeutic potential because of their indispensable regenerative, reparative, angiogenic, anti-apoptotic, and immunosuppressive properties. MSCs can best differentiate into mesodermal cell lineages, including osteoblasts, adipocytes, muscle cells, endothelial cells and chondrocytes. Specific differentiation of MSCs could be induced through limited conditions. In addition to the relevant differentiation factors, drastic changes also occur in the microenvironment to conduct it in an optimal manner for particular differentiation. Recent evidence suggests that the mitochondria participate in the regulating of direction and process of MSCs differentiation. Therefore, our current review focuses on how mitochondria participate in both osteogenesis and adipogenesis of MSC differentiation. Besides that, in our current review, we try to provide a further understanding of the relationship between the behavior of mitochondria and the direction of MSC differentiation, which could optimize current cellular culturing protocols for further facilitating tissue engineering by adjusting specific conditions of stem cells.


2021 ◽  
Vol 22 (2) ◽  
pp. 654
Author(s):  
Ka Young Kim ◽  
Keun-A Chang

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Several treatments for PD have focused on the management of physical symptoms using dopaminergic agents. However, these treatments induce various adverse effects, including hallucinations and cognitive impairment, owing to non-targeted brain delivery, while alleviating motor symptoms. Furthermore, these therapies are not considered ultimate cures owing to limited brain self-repair and regeneration abilities. In the present study, we aimed to investigate the therapeutic potential of human adipose-derived stem cells (hASCs) using magnetic nanoparticles in a 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We used the Maestro imaging system and magnetic resonance imaging (MRI) for in vivo tracking after transplantation of magnetic nanoparticle-loaded hASCs to the PD mouse model. The Maestro imaging system revealed strong hASCs signals in the brains of PD model mice. In particular, MRI revealed hASCs distribution in the substantia nigra of hASCs-injected PD mice. Behavioral evaluations, including apomorphine-induced rotation and rotarod performance, were significantly recovered in hASCs-injected 6-OHDA induced PD mice when compared with saline-treated counterparts. Herein, we investigated whether hASCs transplantation using magnetic nanoparticles recovered motor functions through targeted brain distribution in a 6-OHDA induced PD mice. These results indicate that magnetic nanoparticle-based hASCs transplantation could be a potential therapeutic strategy in PD.


2017 ◽  
Vol 12 (2) ◽  
pp. 153-167 ◽  
Author(s):  
Viktoriya Rybalko ◽  
Pei-Ling Hsieh ◽  
Laura M Ricles ◽  
Eunna Chung ◽  
Roger P Farrar ◽  
...  

2009 ◽  
Vol 55 (3) ◽  
pp. 283-292 ◽  
Author(s):  
Takeshi TERAMURA ◽  
Yuta ONODERA ◽  
Hideki MURAKAMI ◽  
Syunsuke ITO ◽  
Toshihiro MIHARA ◽  
...  

2021 ◽  
Vol 42 ◽  
pp. 401-414
Author(s):  
C Voskamp ◽  
◽  
LA Anderson ◽  
WJLM Koevoet ◽  
S Barnhoorn ◽  
...  

Mesenchymal stem cells (MSCs) are promising cells for regenerative medicine therapies because they can differentiate towards multiple cell lineages. However, the occurrence of cellular senescence and the acquiring of the senescence-associated secretory phenotype (SASP) limit their clinical use. Since the transcription factor TWIST1 influences expansion of MSCs, its role in regulating cellular senescence was investigated. The present study demonstrated that silencing of TWIST1 in MSCs increased the occurrence of senescence, characterised by a SASP profile different from irradiation-induced senescent MSCs. Knowing that senescence alters cellular metabolism, cellular bioenergetics was monitored by using the Seahorse XF apparatus. Both TWIST1-silencing-induced and irradiation-induced senescent MSCs had a higher oxygen consumption rate compared to control MSCs, while TWIST1-silencing-induced senescent MSCs had a low extracellular acidification rate compared to irradiation-induced senescent MSCs. Overall, data indicated how TWIST1 regulation influenced senescence in MSCs and that TWIST1 silencing-induced senescence was characterised by a specific SASP profile and metabolic state.


2020 ◽  
Vol 21 (24) ◽  
pp. 9513
Author(s):  
Patricia Garrido-Pascual ◽  
Ana Alonso-Varona ◽  
Begoña Castro ◽  
María Burón ◽  
Teodoro Palomares

Oxidative stress associated with neuroinflammation is a key process involved in the pathophysiology of neurodegenerative diseases, and therefore, has been proposed as a crucial target for new therapies. Recently, the therapeutic potential of human adipose-derived stem cells (hASCs) has been investigated as a novel strategy for neuroprotection. These cells can be preconditioned by exposing them to mild stress in order to improve their response to oxidative stress. In this study, we evaluate the therapeutic potential of hASCs preconditioned with low doses of H2O2 (called HC016 cells) to overcome the deleterious effect of oxidative stress in an in vitro model of oligodendrocyte-like cells (HOGd), through two strategies: i, the culture of oxidized HOGd with HC016 cell-conditioned medium (CM), and ii, the indirect co-culture of oxidized HOGd with HC016 cells, which had or had not been exposed to oxidative stress. The results demonstrated that both strategies had reparative effects, oxidized HC016 cell co-culture being the one associated with the greatest recovery of the damaged HOGd, increasing their viability, reducing their intracellular reactive oxygen species levels and promoting their antioxidant capacity. Taken together, these findings support the view that HC016 cells, given their reparative capacity, might be considered an important breakthrough in cell-based therapies.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 138 ◽  
Author(s):  
Young Jin Jang ◽  
Jae Hwan Kim ◽  
Sanguine Byun

Autophagy is an essential process that maintains physiological homeostasis by promoting the transfer of cytoplasmic constituents to autophagolysosomes for degradation. In immune cells, the autophagy pathway plays an additional role in facilitating proper immunological functions. Specifically, the autophagy pathway can participate in controlling key steps in innate and adaptive immunity. Accordingly, alterations in autophagy have been linked to inflammatory diseases and defective immune responses against pathogens. In this review, we discuss the various roles of autophagy signaling in coordinating immune responses and how these activities are connected to pathological conditions. We highlight the therapeutic potential of autophagy modulators that can impact immune responses and the mechanisms of action responsible.


2020 ◽  
Vol 21 (21) ◽  
pp. 8129
Author(s):  
Hyunjun Park ◽  
Keun-A Chang

Parkinson’s disease (PD) is the second most common neurodegenerative disease, which is clinically and pathologically characterized by motor dysfunction and the loss of dopaminergic neurons in the substantia nigra, respectively. PD treatment with stem cells has long been studied by researchers; however, no adequate treatment strategy has been established. The results of studies so far have suggested that stem cell transplantation can be an effective treatment for PD. However, PD is a progressively deteriorating neurodegenerative disease that requires long-term treatment, and this has been insufficiently studied. Thus, we aimed to investigate the therapeutic potential of human adipose-derived stem cells (hASC) for repeated vein transplantation over long-term in an animal model of PD. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model mice, hASCs were administered on the tail vein six times at two-week intervals. After the last injection of hASCs, motor function significantly improved. The number of dopaminergic neurons present in the nigrostriatal pathway was recovered using hASC transplantation. Moreover, the administration of hASC restored altered dopamine transporter expression and increased neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF), in the striatum. Overall, this study suggests that repeated intravenous transplantation of hASC may exert therapeutic effects on PD by restoring BDNF and GDNF expressions, protecting dopaminergic neurons, and maintaining the nigrostriatal pathway.


2019 ◽  
Vol 20 (22) ◽  
pp. 5589
Author(s):  
Jaeim Lee ◽  
Ok-Hee Kim ◽  
Sang Chul Lee ◽  
Kee-Hwan Kim ◽  
Jin Sun Shin ◽  
...  

Peroxisome proliferator activated receptor λ coactivator 1α (PGC-1α) is a potent regulator of mitochondrial biogenesis and energy metabolism. In this study, we investigated the therapeutic potential of the secretome released from the adipose-derived stem cells (ASCs) transfected with PGC-1α (PGC-secretome). We first generated PGC-1α-overexpressing ASCs by transfecting ASCs with the plasmids harboring the gene encoding PGC-1α. Secretory materials released from PGC-1α-overexpressing ASCs were collected and their therapeutic potential was determined using in vitro (thioacetamide (TAA)-treated AML12 cells) and in vivo (70% partial hepatectomized mice) models of liver injury. In the TAA-treated AML12 cells, the PGC-secretome significantly increased cell viability, promoted expression of proliferation-related markers, such as PCNA and p-STAT, and significantly reduced the levels of reactive oxygen species (ROS). In the mice, PGC-secretome injections significantly increased liver tissue expression of proliferation-related markers more than normal secretome injections did (p < 0.05). We demonstrated that the PGC-secretome does not only have higher antioxidant and anti-inflammatory properties, but also has the potential of significantly enhancing liver regeneration in both in vivo and in vitro models of liver injury. Thus, reinforcing the mitochondrial antioxidant potential by transfecting ASCs with PGC-1α could be one of the effective strategies to enhance the therapeutic potential of ASCs.


Sign in / Sign up

Export Citation Format

Share Document