Computerized Multi Phase X-Ray Powder-Diffraction Identification System

1967 ◽  
Vol 11 ◽  
pp. 376-384 ◽  
Author(s):  
G. G. Johnson ◽  
V. Vand

AbstractA computer search system utilising the Powder Diffraction File compiled by the Joint Committee on Powder Diffraction Standards, originally developed for an IBM 7074 in FORTRAN II and reported at the Pittsburgh (1966) conference, has beer. revised and extended to run on IBM 360/50. The system is now written in FORTRAN IV. This search system, which uses all the lines of the reference patterns, has successfully identified up to six standard reference patterns from a multiphase unknown X-ray diffraction pattern in less than 2 min running time. No chemical information is necessary for the system to run. In the revised program, the chemical composition of the patterns is now available from the magnetic tapes in immediate conjunction with the printout of the “most likely” components of the mixture. However, this chemical information is not used by the program itself in the search procedure since, if the unknown pattern is absent from the file, it is helpful to know those compounds which are isostructural with the unknown pattern. With the immediate use of chemical information, these patterns would be eliminated. An estimation of the relative concentration of each of the components, based on absolute intensities, is also calculated by the program. This identification system has been run on experimental data both of the Guinier type and of a less reliable type, with the present Powder Diffraction File on the search tape. Although the number of false matches was increased with the poorer quality of input data, the programs yielded excellent results for both single- and multiple-phase patterns even with poor data and the absence of any chemical information. A series of results from the Materials Research Laboratory of The Pennsylvania State University, illustrating the system in operation with increasingly difficult mixtures, will be given. With such a system in operation at such a small cost, the diffractionist can concentrate on the results and meaning of the identification rather than on the method of identification itself.

2004 ◽  
Vol 19 (4) ◽  
pp. 340-346
Author(s):  
YuanYuan Qiao ◽  
YunFei Xi ◽  
DongTao Zhuo ◽  
Ji Jun Wang ◽  
ShaoFan Lin

A qualitative phase identification system for crystalline mixtures is presented. The system provides up to five-phase qualitative identification using up to nine-peak filtration, and additive full peak matching based on the powder diffraction file of ICDD. It was implemented using Microsoft Visual C++, and runs under most common Windows systems. Screenshots and examples are included.


2021 ◽  
Vol 36 (1) ◽  
pp. 35-42
Author(s):  
Shivang Bhaskar ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pimecrolimus Form B has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Pimecrolimus crystallizes in the space group P21 (#4) with a = 15.28864(7), b = 13.31111(4), c = 10.95529(5) Å, β = 96.1542(3)°, V = 2216.649(9) Å3, and Z = 2. Although there are an intramolecular six-ring hydrogen bond and some larger chain and ring patterns, the crystal structure is dominated by van der Waals interactions. There is a significant difference between the conformation of the Rietveld-refined and the DFT-optimized structures in one portion of the macrocyclic ring. Although weak, intermolecular interactions are apparently important in determining the solid-state conformation. The powder pattern is included in the Powder Diffraction File™ (PDF®) as entry 00-066-1619. This study provides the atomic coordinates to be added to the PDF entry.


2015 ◽  
Vol 30 (3) ◽  
pp. 192-198
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of ziprasidone hydrochloride monohydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Ziprasidone hydrochloride monohydrate crystallizes in space group P-1 (#2) with a = 7.250 10(3), b = 10.986 66(8), c = 14.071 87(14) Å, α = 83.4310(4), β = 80.5931(6), γ = 87.1437(6)°, V = 1098.00(1) Å3, and Z = 2. The ziprasidone conformation in the solid state is very close to the minimum energy conformation. The positively-charged nitrogen in the ziprasidone makes a strong hydrogen bond with the chloride anion. The water molecule makes two weaker bonds to the chloride, and acts as an acceptor in an N–H⋯O hydrogen bond. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1492.


2019 ◽  
Vol 34 (1) ◽  
pp. 50-58
Author(s):  
James A. Kaduk ◽  
Nicholas C. Boaz ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of oxybutynin hydrochloride hemihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Oxybutynin hydrochloride hemihydrate crystallizes in space group I2/a (#15) with a = 14.57266(8), b = 8.18550(6), c = 37.16842(26) Å, β = 91.8708(4)°, V = 4421.25(7) Å3, and Z = 8. The compound exhibits X-ray-induced photoreduction of the triple bond. Prominent in the layered crystal structure is the N–H⋅⋅⋅Cl hydrogen bond between the cation and anion, as well as O–H⋅⋅⋅Cl hydrogen bonds from the water molecule and hydroxyl group of the oxybutynin cation. C–H⋅⋅⋅Cl hydrogen bonds also contribute to the crystal energy, and help determine the conformation of the cation. The powder pattern is included in the Powder Diffraction File™ as entry 00-068-1305.


2018 ◽  
Vol 34 (1) ◽  
pp. 59-65
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of minocycline hydrochloride dihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Minocycline hydrochloride dihydrate crystallizes in space groupP212121(#19) witha= 7.40772(1),b= 14.44924(3),c= 22.33329(4) Å,V= 2390.465(12) Å3, andZ= 4. The minocycline cation is a zwitterion: both dimethylamino groups are protonated and one hydroxyl group is ionized. A potential ambiguity in the orientation of the amide group was resolved by considering Rietveld refinement residuals and displacement coefficients, as well as DFT energies. The crystal structure is dominated by hydrogen bonds. Both water molecules and a hydroxyl group act as donors to the chloride anion. Both protonated dimethyl amine groups act as donors to the ionized hydroxyl group. Several intramolecular O–H···O hydrogen groups help determine the conformation of the cation. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1606.


2018 ◽  
Vol 33 (4) ◽  
pp. 298-302
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of bretylium tosylate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Bretylium tosylate crystallizes in space group C2/c (#15) with a = 32.6238(4), b = 12.40353(14), c = 9.93864(12) Å, β = 101.4676(10), V = 3941.39(5) Å3, and Z = 8. The sample exhibited visible decomposition in the X-ray beam. The unusual displacement ellipsoid of the Br atom probably indicates that the decomposition in the beam involves the Br atom. The crystal structure can be viewed as layered parallel to the bc plane. The layers are double, the center consisting of the cation/anion polar interactions and the outer surface of the double layers consists of hydrocarbon interactions. In the absence of normal hydrogen bond donors, the only hydrogen bonds in the bretylium tosylate structure are C–H…O hydrogen bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2006 ◽  
Vol 21 (2) ◽  
pp. 105-110 ◽  
Author(s):  
T. G. Fawcett ◽  
J. Faber ◽  
F. Needham ◽  
S. N. Kabekkodu ◽  
C. R. Hubbard ◽  
...  

Developments in X-ray analysis hardware and software have combined to dramatically improve the throughput, speed, and accuracy of formulation analyses. We will focus on a complimentary development, the growth and application of a comprehensive database based on the Powder Diffraction File™ (PDF®). The PDF is an edited and standardized combination of several crystallographic databases with ∼497 000 published entries. The comprehensive nature of this database, combined with phase identification and digital pattern simulations, was used to identify complex formulations with crystalline and noncrystalline ingredients. We will show how these parallel developments enhance the ability to correctly identify complex formularies.


2018 ◽  
Vol 33 (1) ◽  
pp. 44-48
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of methylprednisolone acetate form II, C24H32O6, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Methylprednisolone acetate crystallizes in space group P212121 (#19) with a = 8.17608(2), b = 9.67944(3), c = 26.35176(6) Å, V = 2085.474(6) Å3, and Z = 4. Both hydroxyl groups act as hydrogen bond donors, resulting in a two-dimensional hydrogen bond network in the ab plane. C–H⋯O hydrogen bonds also contribute to the crystal energy. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1412.


1990 ◽  
Vol 34 ◽  
pp. 369-376
Author(s):  
G. J. McCarthy ◽  
J. M. Holzer ◽  
W. M. Syvinski ◽  
K. J. Martin ◽  
R. G. Garvey

AbstractProcedures and tools for evaluation of reference x-ray powder patterns in the JCPDSICDD Powder Diffraction File are illustrated by a review of air-stable binary oxides. The reference patterns are evaluated using an available microcomputer version of the NBS*A1DS83 editorial program and PDF patterns retrieved directly from the CD-ROM in the program's input format. The patterns are compared to calculated and experimental diffractograms. The majority of the oxide patterns have been found to be in good agreement with the calculated and observed diffractograms, but are often missing some weak reflections routinely observed with a modern diffractometer. These weak reflections are added to the PDF pattern. For the remainder of the phases, patterns are redetermined.


Sign in / Sign up

Export Citation Format

Share Document