A Fusion Method for the X-Ray Fluorescence Analysis of Portland Cements, Clinker and Raw Materials Utilizing Cerium (IV) Oxide in Lithium Borate Fluxes

1985 ◽  
Vol 29 ◽  
pp. 581-585 ◽  
Author(s):  
Gregory S. Barger

AbstractThis method describes the addition of cerium (IV) oxide to a lithium borate flux. CeO2 provides a non-analytic glass former to the melt production. CeO2 also acts as an interelemental buffer replacing the use of lanthanum oxide for long wavelength absorption. With cerium oxide addition, excellent results are produced, resulting in part from the elimination of recrystallization problems encountered with lanthanum oxide use. Analytical results easily meet the ASTM C-114 qualification requirements for rapid method analysis of hydraulic cements.

2015 ◽  
Vol 19 (07) ◽  
pp. 887-902 ◽  
Author(s):  
Nuonuo Zhang ◽  
Kanumuri Ramesh Reddy ◽  
Jianbing Jiang ◽  
Masahiko Taniguchi ◽  
Roger D. Sommer ◽  
...  

The ability to introduce substituents at designated sites about the perimeter of synthetic bacteriochlorins – analogs of bacteriochlorophylls of bacterial photosynthesis – remains a subject of ongoing study. Here, the self-condensation of a dihydrodipyrrin-dioxolane affords a 5-[2-(trimethylsiloxy)ethoxy]bacteriochlorin. Like a 5-methoxybacteriochlorin, the latter undergoes regioselective bromination at the 15-position, directed by the distal 5-alkoxy group. On the other hand, attempted bromination of a bacteriochlorin bearing a 5-(2-hydroxyethoxy) group resulted in intramolecular ether formation with the adjacent β-pyrroline position to give an annulated dioxepine ring (confirmed by single-crystal X-ray structural analysis). The hydroxyethoxy group at the 5-position can be derivatized by acylation. In addition, the installation of auxochromes (methoxycarbonyl, phenylethynyl) at the β-pyrrole rings causes a substantial bathochromic shift of the long-wavelength absorption band (812 nm) and companion fluorescence emission band (821 nm). Taken together, the modification of the 5-substituent complements existing methods for installing a single substituent on the bacteriochlorin macrocycle.


1992 ◽  
Vol 36 ◽  
pp. 121-137
Author(s):  
Frank R. Feret

X-ray fluorescence analysis has been used in the aluminum industry since the beginning of the 1950's. Initial applications involved predominantly raw materials such as bauxite. During the last decades its use expanded to every stage of aluminum production and today, XRF analysis is a recognized analyticaI technique, applied routinely in exploration, reduction and fabrication processes. Typical XRF applications in the aluminum industry at present are listed in Table 1. The number of determinations given represents usual industrial requirements, and may vary between laboratories. The sample preparation techniques are again the most commonly used for the applications.


1983 ◽  
Vol 27 ◽  
pp. 491-496
Author(s):  
Gerald D. Bowling ◽  
Iris B. Ailin-Pyzik ◽  
David R. Jones

This study compares the quality of the fused samples obtained by three separate methods. The first set of samples was prepared by the method used at USGS in Denver and reported by Taggart and Whalberg (1). The second set was fused by our manual method and cast in graphite molds. The third set was fused in the Herzog HAG-12 automated fusion device.The manual fusion technique requires the use of a muffle furnace capable of 1100°C (2100°F) and graphite molds. No release agents such as KBr and LiBr are required since the disks release easily from the graphite. The 25mm diameter center of the “fire-polished” upper surface of the disk is used for analysis without further surface preparation. This method has been shown to be suitable for preparation of a wide variety of glasses and raw materials including burned dolomite, silicates* high zircon materials such as BCS-388, calcined alumina and alumina refractories.


1967 ◽  
pp. 489-493
Author(s):  
J. O. Larson ◽  
R. A. Winkler ◽  
J. C. Guffy

1978 ◽  
Vol 7 (1) ◽  
pp. 2-4 ◽  
Author(s):  
H. L. Giles ◽  
G. M. Holmes

2002 ◽  
Vol 4 (2) ◽  
pp. 79-83 ◽  
Author(s):  
O. Tchaikovskaya ◽  
I. Sokolova ◽  
O. Bazyl ◽  
V. Swetlichnyi ◽  
T. Kopylova ◽  
...  

Photolysis of phenol andp-chlorophenol exposed to KrCl- and Nd-YAG laser light is studied by electron spectroscopy and fluorescence and quantum chemical techniques. The decrease of the quantum yield of phenol fluorescence with increase in the excitation energy is not related to dynamic changes in the intramolecular photophysical processes; rather this is a result of increased photoreaction efficiency. Chlorine substitution for para-state of phenol is shown to strengthen the OH-bond in excitation into the long wavelength absorption band.


2000 ◽  
Vol 15 (2) ◽  
pp. 86-90 ◽  
Author(s):  
Shigeo Hayashi ◽  
Hideo Toraya

The capability of whole-powder-pattern decomposition in the quantitative phase analysis (QPA) of natural products was investigated using three- to six-component mixtures and pottery bodies. Here, the term pottery body means plastic clay suitable for making pottery and it is compounded of ceramic raw materials. Average errors of the weight fractions for each phase were within 1 weight percent in each mixture of natural products. The amounts of reduced oxides in pottery bodies derived from the X-ray diffraction technique were in good agreement with results obtained by X-ray fluorescence analysis. The present procedure does not require knowledge of crystal structures; it appears adequate for the QPA of natural products.


2020 ◽  
Vol 53 (2E) ◽  
pp. 62-73
Author(s):  
Amel Assi

The cement slurry is a mixture of cement, water and additives which is established at the surface for injecting inside hole. The compressive strength is considered the most important properties of slurry for testing the slurry reliability and is the ability of slurry to resist deformation and formation fluids. Compressive strength is governed by the sort of raw materials that include additives, cement structure, and exposure circumstances. In this work, we use micro silica like pozzolanic materials. Silica fume is very fine noncrystalline substantial. Silica fume can be utilized like material for supplemental cementations for increasing the compressive strength and durability of cement. Silica fume has very fine particles size less than 1 micron and by an average of about 0.1 microns, about 100 times slighter than particles of cement. We are adding 0%, 5%, 10%, 15%, 20% and 25% micro silica by wt. of cement. The results showed that adding micro silica enhance the performance of Iraqi cement but also leads to a slight decrease in thickening time. To avoid this problem, super plasticizer is used to make the process of cement pumping more easily, in other words, increase thickening time and increase compressive strength. The experimental work showed that adding micro silica leads to reduce free water and this property is very important through horizontal drilling. X-ray fluorescence technique delivers beneficial elemental information about the chemical structure of Iraqi cement to help us use it without causing damage through the cementing job. In this paper, some outlines of the XRF device and its main applications are presented. By using X-ray fluorescence analysis, we detect the problem of Iraqi cement and solve it in this paper to use it at cementing jobs in the Iraqi field instead of using imported cement.


Sign in / Sign up

Export Citation Format

Share Document