scholarly journals In Vitro Activities of Sparfloxacin, Ceftriaxone, Penicillin, Tetracycline and Doxycycline againstChlamydia trachomatisandNeisseria gonhorrhoeae

1992 ◽  
Vol 3 (3) ◽  
pp. 114-117
Author(s):  
Hazel Talbot ◽  
Barbara Romanowski

In vitro sparfloxacin was highly active against 223 penicillin-susceptible isolates ofNeisseria gonorrhoeaewith a 90% minimal inhibitory concentration (MIC90) of 0.004 μg/mL. Resistant strains ofN gonorrhoeaetotalled 55; 32 were penicillinase-producing and 23 chromosomally resistant. The MIC90for these isolates was 0.004 μg/mL and 0.008 μg/mL, respectively.Chlamydia trachomatiswas also very susceptible with an MIC50of 0.063 μg/mL and a 50% minimal bactericidal concentration of 0.032 μg/mL for 11 isolates.

1997 ◽  
Vol 41 (10) ◽  
pp. 2165-2172 ◽  
Author(s):  
F Biavasco ◽  
C Vignaroli ◽  
R Lupidi ◽  
E Manso ◽  
B Facinelli ◽  
...  

LY333328 is a semisynthetic N-alkyl derivative of LY264826, a naturally occurring structural analog of vancomycin. LY333328 was evaluated for its in vitro inhibitory and bactericidal activities in comparison with those of the two currently available glycopeptides (vancomycin and teicoplanin). Glycopeptide-susceptible test strains included a total of 311 isolates (most of clinical origin) from the genera Staphylococcus, Enterococcus, Streptococcus, Aerococcus, Gemella, Lactococcus, Listeria, Corynebacterium, and Clostridium. Test strains resistant or intermediate to vancomycin and/or teicoplanin included 56 clinical isolates of Enterococcus (of the VanA, VanB, and VanC phenotypes) and 32 clinical isolates of Staphylococcus (S. haemolyticus, S. epidermidis, and S. aureus), 31 strains of gram-positive genera outside the spectrum of activity of vancomycin (Leuconostoc, Pediococcus, Lactobacillus, and Erysipelothrix), and laboratory-derived organisms obtained after exposure of susceptible Staphylococcus isolates to teicoplanin (6 strains) or laboratory-derived organisms with resistance determinants received from VanA enterococci (2 Enterococcus and 25 Listeria transconjugants). LY333328 was highly active against staphylococci, enterococci, and listeriae (whether they were clinical or laboratory-derived strains) resistant to the currently available glycopeptides. In particular, the MICs of LY333328 did not vary substantially between teicoplanin-susceptible and teicoplanin-resistant staphylococci and between vancomycin-susceptible and vancomycin-resistant enterococci. LY333328 demonstrated fairly good inhibitory activity even against most strains of Leuconostoc, Pediococcus, and Erysipelothrix (MIC range, 1 to 8 microg/ml), whereas it proved less active (although much more active than vancomycin or teicoplanin) against Lactobacillus strains. In minimal bactericidal concentration (MBC) and time-kill studies, LY333328 demonstrated excellent bactericidal activity; enterococci, in particular, which were largely tolerant of vancomycin and teicoplanin, were uniformly killed by LY333328, with MBC-to-MIC ratios of 4 to 8 for most vancomycin-susceptible and vancomycin-resistant strains. In attempts to select for resistant clones, no survivors stably growing in the presence of 10 microg of LY333328 per ml were obtained from the Staphylococcus and Enterococcus test strains exposed to the drug.


Author(s):  
Hiral Vasavada ◽  
Sailaja Inampudi

Different plant extracts are considerably safe from infectious agents and may be used for medical purposes. The present research was conducted against the six standard microorganisms to quantify the antimicrobial activities of peppermint (Mentha piperita) extracts. The traditional approaches of minimum bactericidal concentration (MBC) and minimal inhibitory concentration (MIC) were used to approximate the antibacterial activities of ethanol, methanol, and chloroform peppermint extracts. The inhibitory function of the ethanol extract was comparable to that of chloroform (10 to 80mg/ml) and methanol (10 to 80mg/ml) against all gram-negative microorganisms. The minimum value of MIC was recorded for Streptococcus pyogenes (5mg/ml for extract of ethanol), followed by E. coli (10mg/ml for extract of ethanol) and then by Enterococcus faecalis (15mg/ml for extract of ethanol). With respect to the standard microorganisms, the MBC values were higher for both extracts than the corresponding MIC values. This work demonstrated the possible efficacy of antibacterial action on M. Piperita extracts from normal microorganisms (A. Baumenii, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa and Klebsiella pneumoniae), particularly ethanol extract. In summary, the peppermint ethanol extract had important growth-inhibiting effects on observed standard micro-organisms, followed by chloroform and methanol extracts. Further to in vitro and in vivo studies on a wide variety of natural microorganisms and therapeutic isolates are required to investigate and standardize the inhibitory activity of peppermint extracts against the most dangerous human pathogenic agents.


2019 ◽  
Vol 83 ◽  
pp. 180-185 ◽  
Author(s):  
Thi Huyen Vu ◽  
Nguyet-Thanh Ha-Duong ◽  
Alexandra Aubry ◽  
Estelle Capton ◽  
Pierre Fechter ◽  
...  

2021 ◽  
Vol 51 (2) ◽  
Author(s):  
Fernanda Cristina Kandalski Bortolotto ◽  
Maria Helena da Rosa Farfan ◽  
Nathalia Cristina Kleinke Jede ◽  
Gabriela Maia Danielski ◽  
Renata Ernlund Freitas de Macedo

ABSTRACT: Sausages are highly susceptible to microbial spoilage. Lactic acid bacteria (LAB) is the main group of spoilage bacteria in vacuum packed cooked sausages. To control microbial growth natural antimicrobials have been used as food preservatives. The aim of this study was to identify strains of lactic acid bacteria isolated from spoiled commercial Calabresa sausages and use them in an in vitro challenge with the natural antimicrobials, nisin (NI) and ε-poly-L-lysine (ε-PL). Mass spectrometry identification of LAB isolated from sausages using MALDI-TOF revealed a predominance of L. plantarum in the LAB population. RAPD-PCR of L. plantarum strains showed four different genetic profiles. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of NI and ε-PL, alone and in combination, against a pool of different profiles L. plantarum were determined. MIC of NI and ε-PL were 0.468 mg/ L and 75 mg/ L; respectively, whereas MBC of NI and ε-PL were 12.48 mg/L and 150 mg/L, respectively. The combined effect of NI and ε-PL was determined using concentrations at 1/4 and 1/8 of individual MICs. Synergistic effect was confirmed at both concentrations showing a fractional inhibitory concentration index of 0.5 and 0.2, respectively. The combination of NI and ε-PL at a small concentration of 0.05 mg/L and 9.375 mg/L, respectively, showed inhibitory effect towards spoilage L. plantarum Results show the potential of the combined use of NI and ε-PL to control sausage spoilage-associated with lactobacilli.


1996 ◽  
Vol 40 (6) ◽  
pp. 1376-1381 ◽  
Author(s):  
H H Locher ◽  
H Schlunegger ◽  
P G Hartman ◽  
P Angehrn ◽  
R L Then

Epiroprim (EPM; Ro 11-8958) is a new selective inhibitor of microbial dihydrofolate reductase. EPM displayed excellent activity against staphylococci, enterococci, pneumococci, and streptococci which was considerably better than that of trimethoprim (TMP). EPM was also active against TMP-resistant strains, although the MICs were still relatively high. Its combination with dapsone (DDS) was synergistic and showed as in vitro activity superior to that of the TMP combination with sulfamethoxazole (SMZ). The EPM-DDS (ratio, 1:19) combination inhibited more than 90% of all important gram-positive pathogens at a concentration of 2 + 38 micrograms/ml. Only a few highly TMP-resistant staphylococci and enterococci were not inhibited. EPM was also more active than TMP against Moraxella catarrhalis, Neisseria meningitidis, and Bacteroides spp., but it was less active than TMP against all other gram-negative bacteria tested. Atypical mycobacteria were poorly susceptible to EPM, but the combination with DDS was synergistic and active at concentrations most probably achievable in biological fluids (MICs from 0.25 +/- 4.75 to 4 + 76 micrograms/ml). EPM and the EPM-DDS combination were also highly active against experimental staphylococcal infections in a mouse septicemia model. The combination EPM-DDS has previously been shown to exhibit activity in Pneumocystis carinii and Toxoplasma models and, as shown in the present study, also shows good activity against a broad range of bacteria including many strains resistant to TMP and TMP-SMZ.


2007 ◽  
Vol 51 (5) ◽  
pp. 1818-1821 ◽  
Author(s):  
H. Seifert ◽  
U. Aurbach ◽  
D. Stefanik ◽  
O. Cornely

ABSTRACT Isavuconazole is the active component of the new azole antifungal agent BAL8557, which is entering phase III clinical development. This study was conducted to compare the in vitro activities of isavuconazole and five other antifungal agents against 296 Candida isolates that were recovered consecutively from blood cultures between 1995 and 2004 at a tertiary care university hospital. Microdilution testing was done in accordance with CLSI (formerly NCCLS) guideline M27-A2 in RPMI-1640 MOPS (morpholinepropanesulfonic acid) broth. The antifungal agents tested were amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole, and isavuconazole. C. albicans was the most common species, representing 57.1% of all isolates. There was no trend found in favor of non-Candida albicans species over time. In terms of MIC50s, isavuconazole was more active (0.004 mg/liter) than amphotericin B (0.5 mg/liter), itraconazole (0.008 mg/liter), voriconazole (0.03 mg/liter), flucytosine (0.125 mg/liter), and fluconazole (8 mg/liter). For isavuconazole, MIC50s/MIC90s ranged from 000.2/0.004 mg/liter for C. albicans to 0.25/0.5 mg/liter for C. glabrata. Two percent of isolates (C. glabrata and C. krusei) were resistant to fluconazole; C. albicans strains resistant to fluconazole were not detected. There were only two isolates with MICs for isavuconazole that were >0.5 mg/liter: both were C. glabrata isolates, and the MICs were 2 and 4 mg/liter, respectively. In conclusion, isavuconazole is highly active against Candida bloodstream isolates, including fluconazole-resistant strains. It was more active than itraconazole and voriconazole against C. albicans and C. glabrata and appears to be a promising agent against systemic Candida infections.


2017 ◽  
Vol 12 (4) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
Shi Sun ◽  
Corene Canning ◽  
Kuiwu Wang ◽  
Wenjun Zhu ◽  
Fei Yang ◽  
...  

A principal active antimicrobial compound, 2-(3’,5'-dibromo-2'-methoxyphenoxy)-3,5-dibromophenol, was isolated from the methanol extract of Phyllospongia papyracea via bioassay-guided fractionation and isolation. The crude extract and the purified compound were assayed to determine the minimal inhibitory concentration and minimal bactericidal concentration (MBC) using the broth microdilution method. The purified compound was found to be highly active against Bacillus subtilis and Staphylococcus aureus at MIC=1 μg/mL, Campylobacter jejuni at MIC=2 μg/mL, Pseudomonas aeruginosa at MIC=4 μg/mL, and Streptococcus pneumoniae and Listeria monocytogenes at MIC = 8 μg/mL. The activity of this compound was found to be comparable with antibiotics commonly used to control these species of bacteria. The results establish 2-(3’,5'-dibromo-2'-methoxyphenoxy)-3,5-dibromophenol as a potential lead molecule for the development of antibacterial agents.


2017 ◽  
Vol 61 (3) ◽  
Author(s):  
D. J. Farrell ◽  
H. S. Sader ◽  
P. R. Rhomberg ◽  
N. E. Scangarella-Oman ◽  
R. K. Flamm

ABSTRACT Gepotidacin (formerly GSK2140944) is a novel, first-in-class, triazaacenaphthylene antibacterial that inhibits bacterial DNA gyrase and topoisomerase IV via a unique mechanism and has demonstrated in vitro activity against Neisseria gonorrhoeae, including drug-resistant strains, and also targets pathogens associated with other conventional and biothreat infections. Broth microdilution was used to evaluate the MIC and minimum bactericidal concentration (MBC) activity of gepotidacin and comparators against 25 N. gonorrhoeae strains (including five ciprofloxacin-nonsusceptible strains). Gepotidacin activity was also evaluated against three N. gonorrhoeae strains (including a ciprofloxacin-nonsusceptible strain) for resistance development, against three N. gonorrhoeae strains (including two tetracycline- and azithromycin-nonsusceptible strains) using time-kill kinetics and checkerboard methods, and against two N. gonorrhoeae strains for the investigation of postantibiotic (PAE) and subinhibitory (PAE-SME) effects. The MIC50 and MIC90 for gepotidacin against the 25 N. gonorrhoeae isolates tested were 0.12 and 0.25 μg/ml, respectively. The MBC50 and MBC90 for gepotidacin were 0.25 and 0.5 μg/ml, respectively. Gepotidacin was bactericidal, and single-step resistance selection studies did not recover any mutants, indicating a low rate of spontaneous single-step resistance. For combinations of gepotidacin and comparators tested using checkerboard methods, there were no instances where antagonism occurred and only one instance of synergy (with moxifloxacin; fractional inhibitory concentration, 0.375). This was not confirmed by in vitro time-kill studies. The PAE for gepotidacin against the wild-type strain ranged from 0.5 to >2.5 h, and the PAE-SME was >2.5 h. These in vitro data indicate that further study of gepotidacin is warranted for potential use in treating infections caused by N. gonorrhoeae.


2006 ◽  
Vol 282 (7) ◽  
pp. 4437-4446 ◽  
Author(s):  
Markus Liebscher ◽  
Günther Jahreis ◽  
Christian Lücke ◽  
Susanne Grabley ◽  
Satish Raina ◽  
...  

We have reported that the hsp70 chaperone DnaK from Escherichia coli might assist protein folding by catalyzing the cis/trans isomerization of secondary amide peptide bonds in unfolded or partially folded proteins. In this study a series of fatty acylated benzamido inhibitors of the cis/trans isomerase activity of DnaK was developed and tested for antibacterial effects in E. coli MC4100 cells. Nα-[Tetradecanoyl-(4-aminomethylbenzoyl)]-l-asparagine is the most effective antibacterial with a minimal inhibitory concentration of 100 ± 20 μg/ml. The compounds were shown to compete with fluorophore-labeled σ32-derived peptide for the peptide binding site of DnaK and to increase the fraction of aggregated proteins in heat-shocked bacteria. Despite its inability to serve as a folding helper in vivo a DnaK-inhibitor complex was still able to sequester an unfolded protein in vitro. Structure activity relationships revealed a distinct dependence of DnaK-assisted refolding of luciferase on the fatty acyl chain length, whereas the minimal inhibitory concentration was most sensitive to the structural nature of the benzamido core. We conclude that the isomerase activity of DnaK is a major survival factor in the heat shock response of bacteria and that small molecule inhibitors can lead to functional inactivation of DnaK and thus will display antibacterial activity.


2001 ◽  
Vol 45 (1) ◽  
pp. 303-305 ◽  
Author(s):  
Christopher Storey ◽  
Ian Chopra

ABSTRACT Binding affinities of β-lactam antibiotics for the three penicillin binding proteins (PBPs) from Chlamydia trachomatis were determined in vitro and compared with their antichlamydial activities. Mecillinam selectively inhibited PBP1, with a 50% inhibitory concentration for PBP1 binding (0.2 μg/ml) similar to the MIC (0.1 μg/ml) and minimum bactericidal concentration (0.25 μg/ml). Although the other β-lactams inhibited a wider range of PBPs than mecillinam, their antichlamydial activities were inferior to that of mecillinam.


Sign in / Sign up

Export Citation Format

Share Document