scholarly journals Configurable 2-D Linear Feedback Shift Registers for VLSI Built-in Self-test Designs

VLSI Design ◽  
2000 ◽  
Vol 11 (2) ◽  
pp. 149-159
Author(s):  
Chien-In Henry Chen ◽  
Yingjie Zhou

Recently a multiple-sequence test generator was presented based on two-dimensional linear feedback shift registers (2-D LFSR). This generator can generate a set of precomputed test vectors obtained by an ATPG tool for detecting random-pattern-resistant faults and particular hard-to-detect faults. In addition, it can generate better random patterns than a conventional LFSR. In this paper we describe an optimized BIST scheme which has a configurable 2-D LFSR structure. Starting from a set of stuck-at faults and a corresponding set of test vectors detecting these faults, the corresponding test pattern generator is determined automatically. A synthesis procedure of designing this test generator is presented. Experimental results show that the hardware overhead is considerably reduced compared with 2-D LFSR generators.

2017 ◽  
Vol 10 (04) ◽  
pp. 710-717
Author(s):  
A. Ahmad ◽  
D. Al Abri ◽  
S. S. Al Busaidi ◽  
M. M. Bait-Suwailam

The authors show that in a Built-In Self-Test (BIST) technique, based on linear-feedback shift registers, when the feedback connections in pseudo-random test-sequence generator and signature analyzer are images of each other and corresponds to primitive characteristic polynomial then behaviors of faults masking remains identical. The simulation results of single stuck-at faults show how the use of such feedback connections in pseudo-random test-sequence generator and signature analyzer yields to mask the same faults.


2014 ◽  
Vol 11 (2) ◽  
pp. 1 ◽  
Author(s):  
A Ahmad ◽  
A Al Maashri

The study of the length of pseudo-random binary sequences generated by Linear- Feedback Shift Registers (LFSRs) plays an important role in the design approaches of built-in selftest, cryptosystems, and other applications. However, certain LFSR structures might not be appropriate in some situations. Given that determining the length of generated pseudo-random binary sequence is a complex task, therefore, before using an LFSR structure, it is essential to investigate the length and the properties of the sequence. This paper investigates some conditions and LFSR’s structures, which restrict the pseudo-random binary sequences’ generation to a certain fixed length. The outcomes of this paper are presented in the form of theorems, simulations, and analyses. We believe that these outcomes are of great importance to the designers of built-in self-test equipment, cryptosystems, and other applications such as radar, CDMA, error correction, and Monte Carlo simulation. 


Author(s):  
Sabir Hussain ◽  
V. Malleshwara Rao

<span>Switching activity and Transition density computation is an essential stage for dynamic power estimation and testing time reduction. The study of switching activity, transition densities and weighted switching activities of pseudo random binary sequences generated by Linear Feedback shift registers and Feed Forward shift registers plays a crucial role in design approaches of Built-In Self Test, cryptosystems, secure scan designs and other applications. This paper proposed an approach to find transition densities, which plays an important role in choosing of test pattern generator We have analyze conventional and proposed designs using our approache, This work also describes the testing time of benchmark circuits. The outcome of this paper is presented in the form of algorithm, theorems with proofs and analyses table which strongly support the same. The proposed algorithm reduces switching activity and testing time up to 51.56% and 84.61% respectively.</span>


10.14311/686 ◽  
2005 ◽  
Vol 45 (2) ◽  
Author(s):  
P. Fišer ◽  
H. Kubátová

The test pattern generator produces test vectors that are applied to the tested circuit during pseudo-random testing of combinational circuits. The nature of the generator thus directly influences the fault coverage achieved. In this paper we discuss the influence of the type of pseudo-random pattern generator on stuck-at fault coverage. Linear feedback shift registers (LFSRs) are mostly used as test pattern generators, and the generating polynomial is primitive to ensure the maximum period. We have shown that it is not necessary to use primitive polynomials, and moreover that their using is even undesirable in most cases. This fact is documented by statistical graphs. The necessity of the proper choice of a generating polynomial and an LFSR seed is shown here, by designing a mixed-mode BIST for the ISCAS benchmarks.An alternative to LFSRs are cellular automata (CA). We study the effectiveness of CA when used as pseudo-random pattern generators. The observations are documented by statistical results. 


Sign in / Sign up

Export Citation Format

Share Document