scholarly journals Solar System Motions and the Cosmological Constant:cmd="newline"A New Approach

2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Lorenzo Iorio

We use the corrections to the Newton-Einstein secular precessions of the longitudes of perihelia of some planets (Mercury, Earth, Mars, Jupiter, Saturn) of the Solar System, phenomenologically estimated as solve-for parameters by the Russian astronomer E. V. Pitjeva in a global fit of almost one century of data with the EPM2004 ephemerides, in order to put on the test the expression for the perihelion precession induced by a uniform cosmological constant in the framework of the Schwarzschild-de Sitter (or Kottler) space-time. We compare such an extra rate to the estimated corrections to the planetary perihelion precessions by taking their ratio for different pairs of planets instead of using one perihelion at a time for each planet separately, as done so far in literature. The answer is negative, even by further rescaling by a factor 10 (and even 100 for Saturn) the errors in the estimated extra precessions of the perihelia released by Pitjeva. Our conclusions hold also for any other metric perturbation having the same dependence on the spatial coordinates, as those induced by other general relativistic cosmological scenarios and by many modified models of gravity. Currently ongoing and planned interplanetary spacecraft-based missions should improve our knowledge of the planets' orbits allowing for more stringent constraints.

2012 ◽  
Vol 21 (04) ◽  
pp. 1250031 ◽  
Author(s):  
ZDENĚK STUCHLÍK ◽  
JAN SCHEE

We test precision of the Cosmological Paczynski–Wiita (CPW) potential reflecting properties of the Schwarzschild–de Sitter (SdS) spacetimes in modeling dynamical phenomena related to galaxy motion. We consider a simplified model of Magellanic Clouds moving in the field of Milky Way as test particles. Time evolution of their position along trajectories obtained in the CPW framework using the notion of Newtonian time is compared to the one obtained in the fully general relativistic (GR) approach when the time evolution is expressed in terms of time related to the location of Earth in the Galaxy field. The differences in the position-evolution of the Magellanic Clouds obtained in the CPW and GR approaches are given for appropriately chosen values of the Milky Way mass. It is shown that the integrated relativistic corrections represent ~10-5 part of the Newtonian CPW predictions for the orbital characteristics of the motion and slightly grow with Galaxy mass growing, being at least by one order higher than the local scaling GR corrections. The integrated orbital GR corrections thus could be important only in very precise modeling of the motion of Magellanic Clouds. The CPW framework is used to show that, quite surprisingly, the influence of the cosmological constant on the Magellanic Clouds motion can be strong and significantly alters the trajectories of Magellanic Clouds and time evolution along them. The relative contribution of the cosmological constant is ~10-1 or higher. It is most profoundly demonstrated by the increase of the binding mass that represents 22% for Small Magellanic Cloud and even 47% for Large Magellanic Cloud, putting serious doubts on gravitational binding to the Milky Way in the later case.


2011 ◽  
Vol 20 (14) ◽  
pp. 2761-2766 ◽  
Author(s):  
D. GRUMILLER ◽  
F. PREIS

Given some assumptions, it is possible to derive the most general post-general relativistic theory of gravity for the distant field of a point mass. The force law derived from this theory contains a Rindler term in addition to well-known contributions, a Schwarzschild mass and a cosmological constant. The same force law recently was confronted with solar system precision data. The Rindler force, if present in Nature, has intriguing consequences for gravity at large distances. In particular, the Rindler force is capable of explaining about 10% of the Pioneer anomaly and simultaneously ameliorates the shape of galactic rotation curves.


2015 ◽  
Vol 24 (11) ◽  
pp. 1550084 ◽  
Author(s):  
Shubhrangshu Ghosh ◽  
Prabir Banik

In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central dominant (CD) galaxies directly from ambient intercluster medium (ICM). However, for high mass accretion rate, the influence of cosmological constant on Bondi accretion dynamics, generically, diminishes. As active galactic nuclei (AGN)/ICM feedback can be advertently linked to Bondi type spherical accretion, any proper modeling of AGN feedback or megaparsecs-scale jet dynamics or accretion flow from ICM onto the central regions of host galaxies should take into account the relevant information of repulsive Λ, especially in context to supergiant elliptical galaxies or CD galaxies present in rich galaxy clusters. This could also explore the feasibility to limit the value of Λ, from the kinematics in local galactic-scales.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 173
Author(s):  
Hideyoshi Arakida

As an extension of our previous paper, instead of the total deflection angle α, we will mainly focus on the discussion of measurable angle of the light ray ψP at the position of observer P in Kerr–de Sitter spacetime, which includes the cosmological constant Λ. We will investigate the contribution of the radial and transverse motion of the observer which are connected with radial velocity vr and transverse velocity bvϕ (b is the impact parameter) as well as the spin parameter a of the central object which induces the gravito-magnetic field or frame dragging and the cosmological constant Λ. The general relativistic aberration equation is employed to take into account the influence of motion of the observer on the measurable angle ψP. The measurable angle ψP derived in this paper can be applicable to the observer placed within the curved and finite-distance region in the spacetime. The equation of light trajectory will be obtained in such a sense that the background is de Sitter spacetime instead of Minkowski one. As an example, supposing the cosmological gravitational lensing effect, we assume that the lens object is the typical galaxy and the observer is in motion with respect to the lensing object at a recession velocity vr=bvϕ=vH=H0D (where H0 is a Hubble constant and D means the distance between the observer and the lens object). The static terms O(Λbm,Λba) are basically comparable with the second order deflection term O(m2), and they are almost one order smaller that the Kerr deflection −4ma/b2. The velocity-dependent terms O(Λbmvr,Λbavr) for radial motion and O(Λb2mvϕ,Λb2avϕ) for transverse motion are at most two orders of magnitude smaller than the second order deflection O(m2). We also find that even when the radial and transverse velocity have the same sign, asymptotic behavior as ϕ approaches 0 is different from each other, and each diverges to opposite infinity.


2000 ◽  
Vol 15 (35) ◽  
pp. 2153-2158 ◽  
Author(s):  
M. K. MAK ◽  
PETER N. DOBSON ◽  
T. HARKO

Upper limits for the mass–radius ratio are derived for arbitrary general relativistic matter distributions in the presence of a cosmological constant. General restrictions for the redshift and total energy (including the gravitational contribution) for compact objects in the Schwarzschild–de Sitter geometry are also obtained in terms of the cosmological constant and of the mean density of the star.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sukruti Bansal ◽  
Silvia Nagy ◽  
Antonio Padilla ◽  
Ivonne Zavala

Abstract Recent progress in understanding de Sitter spacetime in supergravity and string theory has led to the development of a four dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua, also called de Sitter supergravity. One approach makes use of constrained (nilpotent) superfields, while an alternative one couples supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action. These two approaches have been shown to give rise to the same 4D action. A novel approach to de Sitter vacua in supergravity involves the generalisation of unimodular gravity to supergravity using a super-Stückelberg mechanism. In this paper, we make a connection between this new approach and the previous two which are in the context of nilpotent superfields and the goldstino brane. We show that upon appropriate field redefinitions, the 4D actions match up to the cubic order in the fields. This points at the possible existence of a more general framework to obtain de Sitter spacetimes from high-energy theories.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Ivano Basile ◽  
Stefano Lanza

Abstract We study de Sitter configurations in ten-dimensional string models where supersymmetry is either absent or broken at the string scale. To this end, we derive expressions for the cosmological constant in general warped flux compactifications with localized sources, which yield no-go theorems that extend previous works on supersymmetric cases. We frame our results within a dimensional reduction and connect them to a number of Swampland conjectures, corroborating them further in the absence of supersymmetry. Furthermore, we construct a top-down string embedding of de Sitter brane-world cosmologies within unstable anti-de Sitter landscapes, providing a concrete realization of a recently revisited proposal.


2018 ◽  
Vol 27 (04) ◽  
pp. 1850046 ◽  
Author(s):  
Xiaokai He ◽  
Jiliang Jing ◽  
Zhoujian Cao

Gravitational radiation plays an important role in astrophysics. Based on the fact that our universe is expanding, the gravitational radiation when a positive cosmological constant is presented has been studied along with two different ways recently, one is the Bondi–Sachs (BS) framework in which the result is shown by BS quantities in the asymptotic null structure, the other is the perturbation approach in which the result is presented by the quadrupoles of source. Therefore, it is worth to interpret the quantities in asymptotic null structure in terms of the information of the source. In this paper, we investigate this problem and find the explicit expressions of BS quantities in terms of the quadrupoles of source in asymptotically de Sitter spacetime. We also estimate how far away the source is, the cosmological constant may affect the detection of the gravitational wave.


Sign in / Sign up

Export Citation Format

Share Document