Experimental and numerical investigations of tip injection on tip clearance flow in an axial turbine cascade

2011 ◽  
Vol 35 (6) ◽  
pp. 1214-1222 ◽  
Author(s):  
Maosheng Niu ◽  
Shusheng Zang
2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Maosheng Niu ◽  
Shusheng Zang

A numerical investigation has been performed to study the influences of cooling injection from the blade tip surface on controlling tip clearance flow in an unshrouded, high-turning axial turbine cascade. Emphasis is put on the analysis of the effectiveness of tip injection when the approaching flow is at design and off-design incidences. A total of three incidence angles are investigated, 7.4°, 0°, 0°, 0°, and 7.6°, 0° relative to the design value. The results indicate that even at the off-design incidences, tip injection can also act as an obstruction to the tip clearance flow and weaken the interaction between the passage flow and the tip clearance flow. It is also found that tip injection causes the tip clearance loss to be less sensitive to the incidences. Moreover, with injection, at all these incidences the heat transfer conditions are improved significantly on the blade tip surface in the middle and aft parts of blade. Thus, tip injection is proved to be an effective method of controlling tip clearance flow, even at off-design conditions. Beside that, an indirect empirical correlation is observed to be able to perform well in predicting the losses induced by tip clearance flow at design and off-design conditions, no matter whether air injection is active or not.


Author(s):  
Shaowen Chen ◽  
Zhihua Zhou ◽  
Tao Cui ◽  
Jinsheng Wang ◽  
Songtao Wang

Taking into account the tip leakage flow will cause the loss of a substantial increase, how to effectively control the tip clearance flow has become a current research focus. In this paper, the effects of tip injection in a low pressure turbine cascade with different injection locations, number of injection holes and mass flow rate are investigated in detail. The SST k-ω turbulence model on the basis of the Gamma-Re transition model is adopted to compute the three-dimensional flow in the cascade of a turbine cascade with tip clearance. The feasibility of a commercial computational fluid dynamic code was validated and the computed data showed a good agreement with experimental data. The effect of the tip injection locations at camber line is better than that of close to the suction side or the pressure side. The total pressure loss decreased significantly by about 22% by increasing the injection flow rate to 6g/s. The main purpose of tip injection for the control of tip clearance flow is not simple to decrease the mass flow rate of leakage flow. There needs to be a more reasonable tip injection scheme which must consider the unfavorable effects of flow blockage in the clearance, and the losses due to the mixing of injection flow with tip clearance flow and leakage flow with main flow are reduced in order to achieve the optimal effect of clearance flow control.


Author(s):  
R. Dambach ◽  
H. P. Hodson ◽  
I. Huntsman

This paper describes an experimental investigation of tip clearance flow in a radial inflow turbine. Flow visualisation and static pressure measurements were performed. These were combined with hot-wire traverses into the tip gap. The experimental data indicates that the tip clearance flow in a radial turbine can be divided into three regions. The first region is located at the rotor inlet, where the influence of relative casing motion dominates the flow over the tip. The second region is located towards midchord, where the effect of relative casing motion is weakened. Finally a third region exists in the exducer, where the effect of relative casing motion becomes small and the leakage flow resembles the tip flow behaviour in an axial turbine. Integration of the velocity profiles showed that there is little tip leakage in the first part of the rotor because of the effect of scraping. It was found that the bulk of tip leakage flow in a radial turbine passes through the exducer. The mass flow rate, measured at four chordwise positions, was compared with a standard axial turbine tip leakage model. The result revealed the need for a model suited to radial turbines. The hot-wire measurements also indicated a higher tip gap loss in the exducer of the radial turbine. This explains why the stage efficiency of a radial inflow turbine is more affected by increasing the radial clearance than by increasing the axial clearance.


2007 ◽  
Vol 16 (4) ◽  
pp. 309-320 ◽  
Author(s):  
Shaojuan Geng ◽  
Hongwu Zhang ◽  
Jingyi Chen ◽  
Weiguang Huang

Author(s):  
B. Stephan ◽  
H. E. Gallus ◽  
R. Niehuis

A multistage turbomachine has inherently unsteady flow fields due to the relative motion between rotor and stator airfoils, which lead to viscous and inviscid interactions between the blade rows. Additionally, the radial clearance between casing and rotor strongly influences the 3D flow field and the loss generation in turbomachines. The objective of the presented study is to investigate the effects of tip clearance on secondary flow phenomena and, in consequence, on the performance of a 1-1/2 stage axial turbine. The low aspect ratio of the blades and their prismatic design leads to a high degree of secondary flows and three-dimensionality. Extended measurements of the flow field behind each blade row with pneumatic and hotwire probes have been conducted for three different tip clearances. Experimental results reveal significant change of flow behavior and turbine performance with increasing tip clearance.


2008 ◽  
Vol 17 (2) ◽  
pp. 147-155 ◽  
Author(s):  
Wei Li ◽  
Wei-yang Qiao ◽  
Kai-fu Xu ◽  
Hua-ling Luo

2006 ◽  
Vol 2006 ◽  
pp. 1-11 ◽  
Author(s):  
Xingen Lu ◽  
Wuli Chu ◽  
Junqiang Zhu ◽  
Zhiting Tong

Steady tip injection has been demonstrated to be an effective means of extending the stable operating range of a tip-critical compressor. This study presents a state-of-the-art design for the tip injection through the casing with flush-mounted inclined holes and the effectiveness of steady micro-air injection to enhance stability in a subsonic axial-flow compressor rotor using an external-air supply. For the tested rotor, experimental results demonstrate that at 53% design speed, the stalling mass flow can be reduced by 7.69% using an injected mass flow equivalent to 0.064% of the annulus flow. Time-dependent CFD simulations were conducted to identify the physical mechanic that accounts for the beneficial effects of the steady micro-air injection on the performance and stability of the compressor. Detailed analyses of the flow visualization at the tip have exposed the different tip flow topologies between the cases without tip injection and with tip injection. It was found that the primary stall margin enhancement afforded by the steady micro-air injection is a result of the tip-clearance flow manipulation. The repositioning of the tip-clearance vortex further towards the trailing edge of the blade passage and delaying the movement of incoming/tip-clearance flow interface to the leading edge plane are the physical mechanisms responsible for extending the compressor stall margin.


Sign in / Sign up

Export Citation Format

Share Document