scholarly journals Topological and Kinematic Singularities for a Class of Parallel Mechanisms

2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Nir Shvalb ◽  
Moshe Shoham ◽  
Hagay Bamberger ◽  
David Blanc

We study singularities for a parallel mechanism with a planar moving platform in , with joints which are universal, spherical (spatial case), or rotational (planar case). For such mechanisms, we give a necessary condition for a topological singularity to occur, and describe the corresponding kinematic singularity. An example is provided.

Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 66
Author(s):  
Maurizio Ruggiu ◽  
Xianwen Kong

This paper deals with the reconfiguration analysis of a 3-DOF (degrees-of-freedom) parallel manipulator (PM) which belongs to the cylindrical parallel mechanisms family. The PM is composed of a base and a moving platform shaped as equilateral triangles connected by three serial kinematic chains (legs). Two legs are composed of two universal (U) joints connected by a prismatic (P) joint. The third leg is composed of a revolute (R) joint connected to the base, a prismatic joint and universal joint in sequence. A set of constraint equations of the 1-RPU−2-UPU PM is derived and solved in terms of the Euler parameter quaternion (a.k.a. Euler-Rodrigues quaternion) representing the orientation of the moving platform and of the Cartesian coordinates of the reference point on the moving platform. It is found that the PM may undergo either the 3-DOF PPR or the 3-DOF planar operation mode only when the base and the moving platform are identical. The transition configuration between the operation modes is also identified.


Robotica ◽  
2016 ◽  
Vol 35 (8) ◽  
pp. 1747-1760 ◽  
Author(s):  
MohammadHadi FarzanehKaloorazi ◽  
Mehdi Tale Masouleh ◽  
Stéphane Caro

SUMMARYThis paper proposes an interval-based approach in order to obtain the obstacle-free workspace of parallel mechanisms containing one prismatic actuated joint per limb, which connects the base to the end-effector. This approach is represented through two cases studies, namely a 3-RPR planar parallel mechanism and the so-called 6-DOF Gough–Stewart platform. Three main features of the obstacle-free workspace are taken into account: mechanical stroke of actuators, collision between limbs and obstacles and limb interference. In this paper, a circle(planar case)/spherical(spatial case) shaped obstacle is considered and its mechanical interference with limbs and edges of the end-effector is analyzed. It should be noted that considering a circle/spherical shape would not degrade the generality of the problem, since any kind of obstacle could be replaced by its circumscribed circle/sphere. Two illustrative examples are given to highlight the contributions of the paper.


Author(s):  
Duanling Li ◽  
Chunxia Li ◽  
Zhonghai Zhang ◽  
Xianwen Kong

Metamorphic transformation is a fundamental and key issue in the design and analysis of metamorphic mechanisms. It is tedious to represent and calculate the metamorphic transformations of metamorphic parallel mechanisms using the existing adjacency matrix method. To simplify the configuration transformation analysis, we propose a new method based on block adjacency matrix to analyze the configuration transformations of metamorphic parallel mechanisms. A block adjacency matrix is composed of three types of elements, including limb matrices that are adjacency matrices each representing a limb of a metamorphic parallel mechanism, row matrices each representing how a limb is connected to the moving platform, and column matrices each representing how a limb is connected to the base. Manipulations of the block adjacency matrix for analyzing the metamorphic transformations are presented systematically. If only the internal configuration of a limb changes, the configuration transformations can be obtained by simply calculating the corresponding limb matrix. A 3-URRRR metamorphic parallel mechanism, which has five configurations including a 1-DOF translation configuration and a 3-DOF spherical motion configuration, is taken as an example to illustrate the effectiveness of the proposed approach to the metamorphic transformation analysis of metamorphic parallel mechanism.


2015 ◽  
Vol 6 (1) ◽  
pp. 57-64 ◽  
Author(s):  
B. Li ◽  
Y. M. Li ◽  
X. H. Zhao ◽  
W. M. Ge

Abstract. In this paper, a modified 3-DOF (degrees of freedom) translational parallel mechanism (TPM) three-CRU (C, R, and U represent the cylindrical, revolute, and universal joints, respectively) structure is proposed. The architecture of the TPM is comprised of a moving platform attached to a base through three CRU jointed serial linkages. The prismatic motions of the cylindrical joints are considered to be actively actuated. Kinematics and performance of the TPM are studied systematically. Firstly, the structural characteristics of the mechanism are described, and then some comparisons are made with the existing 3-CRU parallel mechanisms. Although these two 3-CRU parallel mechanisms are both composed of the same CRU limbs, the types of freedoms are completely different due to the different arrangements of limbs. The DOFs of this TPM are analyzed by means of screw theory. Secondly, both the inverse and forward displacements are derived in closed form, and then these two problems are calculated directly in explicit form. Thereafter, the Jacobian matrix of the mechanism is derived, the performances of the mechanism are evaluated based on the conditioning index, and the performance of a 3-CRU TPM changing with the actuator layout angle is investigated. Thirdly, the workspace of the mechanism is obtained based on the forward position analysis, and the reachable workspace volume is derived when the actuator layout angle is changed. Finally, some conclusions are given and the potential applications of the mechanism are pointed out.


2021 ◽  
Author(s):  
Xianwen Kong

Abstract A 3-UPU translational parallel mechanism (TPM) is one of typical TPMs. Several types of 3-UPU TPMs have been proposed in the literature. Despite comprehensive studies on 3-UPU TPMs in which the joint axes on the base and the moving platform are coplanar, only a few 3-UPU TPMs with a skewed base and moving platform have been proposed. However, the impact of link parameters on singularity loci of such TPMs has not been systematically investigated. The advances in computing CGS (comprehensive Gröbner system) or Gröbner cover of parametric polynomial systems provide an efficient tool for solving this problem. This paper presents a systematic classification of 3-UPU TPMs, especially those with a skewed base and moving platform, based on constraint singularity loci. First, the constraint singularity equation of a 3-UPU TPM is derived. To simplify this equation, the coordinate frame on the base (or moving platform) is set up such that the centers of three U joints are located on different coordinate axes. Using Gröbner Cover, the 3-UPU TPMs are classified into 20 types based on the constraint singularity loci. Finally, a novel 3-UPU TPM is proposed. Unlike most of existing 3-UPU TPMs which can transit to two or more 3-DOF operation modes at a constraint singular configuration, the proposed 3-UPU TPM can only transit to one general 3-DOF operation mode in a constraint singular configuration. The singularity locus divides the workspace of this 3-UPU TPM into two constraint singularity-free regions. This work provides a solid foundation for the design of 3-UPU TPMs and a starting point for the classification of a general 3-UPU parallel mechanism.


Author(s):  
Yonggeng Wei ◽  
Xin Shi ◽  
Zhongxian Wang

Background: Compared with the traditional series mechanism, the parallel mechanism has a better kinematic performance. Structural size error is the main factor affecting the accuracy of parallel mechanisms. Objective: The paper mainly studies the compensation of the rod length error, the moving platform radius error and the fixed platform radius error of 3-UPU parallel mechanism. Methods: To establish a generalized forward and inverse solution equation with error compensation, the position change of the moving platform is measured by a laser interferometer, and the change amount of the three connecting rod lengths at the corresponding position is recorded. Optimized by least squares method, the optimized error compensation values are compensated to the kinematics algorithm of the numerical control system, and the positioning accuracy is improved. Results: The results show that the positioning accuracy is higher when the mechanism moves in the lower plane, and the positioning error in the z axis direction is smaller than x, y, y=x, y=-x axis. Conclusion: After the error compensation, the overall positioning accuracy of the mechanism is increased by 60%.


Robotica ◽  
2014 ◽  
Vol 34 (4) ◽  
pp. 764-776 ◽  
Author(s):  
Sheng Guo ◽  
Wei Ye ◽  
Haibo Qu ◽  
Dan Zhang ◽  
Yuefa Fang

SUMMARYIn this paper, a class of novel four Degrees of Freedom (DOF) non-overconstrained parallel mechanisms with large rotational workspace is presented based on screw theory. First, the conflict between the number of independent constraints applied on the moving platform and the number of kinematic limbs for 4-DOF non-overconstrained parallel mechanism is identified. To solve this conflict, the platform partition method is introduced, and two secondary platforms are employed in each of the parallel mechanisms. Then, the motion requirements of the secondary platforms are analyzed and all the possible kinematic chains are enumerated. The geometrical assembly conditions of all possible secondary limbs are analyzed and some typical non-overconstrained parallel mechanisms are generated. In each of the parallel mechanisms, a planetary gear train is used to connect both of the secondary platforms. The large rotational workspace of the moving platform is obtained due to the relative motion of the two secondary platforms. Finally, the kinematics analysis of a typical parallel mechanism is conducted.


Author(s):  
Ziming Chen ◽  
Wen-ao Cao ◽  
Huafeng Ding ◽  
Zhen Huang

Parallel mechanisms (PMs) with three degrees of freedom (DOFs) have been studied extensively, especially the PMs with two rotational and one translational DOFs (2R1T PMs). One major problem of the 2R1T PMs is the inherent parasitic motion. In this paper, a novel 2R1T symmetrical parallel mechanism with no parasitic motion is proposed and studied. The moving platform and the base of this mechanism are mirror symmetric with respect to a mid-plane. This moving platform can realize continuous rotation about any axis or any point on the mid-plane and can have continuous translation along the normal line of the mid-plane. The constraint and motion characteristics of this mechanism are analyzed. The kinematics solutions and the Jacobian matrix are derived. The singularities of this PM are discussed. In the end, several numerical examples are given to show the continuous rotations and continuous translations of this PM. This kind of PMs has outstanding advantages of easy path planning and controlling.


Robotica ◽  
2009 ◽  
Vol 28 (1) ◽  
pp. 107-118 ◽  
Author(s):  
Hee-Byoung Choi ◽  
Atsushi Konno ◽  
Masaru Uchiyama

SUMMARYThis paper deals with the design, implementation, and performance evaluation of a new type of 4-DOF parallel mechanism providing three translations and one rotation for high-speed handling and machining. This parallel mechanism is named H4. A necessary condition and system configuration of the H4 are also described. Hardware and kinematics of the H4 is addressed and the manipulability ellipsoid which is one of the widely used methods to examine the design of parallel mechanisms is addressed. The performance evaluation is carried out to demonstrate the H4 robot. The simulation and experimental results show that three different controllers, the PD, PD + velocity feed-forward, and dynamic compensation controller, dramatically improve the trajectory tracking accuracy.


Author(s):  
Huiping Shen ◽  
Jun Huang

This paper is to design a class of manipulators capable of producing five DOF (degree-of-freedom) output motion for controlling the position and orientation of a line. Four novel 5-SPS parallel mechanisms with LMP (Line Moving Platform) are proposed according to the structure coupling-reducing principle proposed by authors on the basis of an existing 5-SPS parallel mechanism with LMP. Three key topology characteristics, such as structure coupling degree, output position and orientation characteristics, input-output kinematic decoupling, and the position workspace characteristics, as the fourth characteristic, of these five 5-SPS parallel mechanisms with LMP are calculated and compared respectively. It shows that the use of concentric spherical joints on the moving platform can reduce coupling degree of mechanisms and simplify the forward displacement and the workspace analysis. The mechanisms with triple-spherical-joint structure have input-output motion decoupling. Therefore, each of the 5-SPS parallel mechanisms with LMP has its own advantages and applications. This paper provides a foundation for engineering design, optimal selection and potential application of the five 5-SPS parallel mechanisms with LMP.


Sign in / Sign up

Export Citation Format

Share Document