scholarly journals Automatic Estimation of the Dynamics of Channel Conductance Using a Recurrent Neural Network

2009 ◽  
Vol 2009 ◽  
pp. 1-10
Author(s):  
Masaaki Takahashi ◽  
Kiyohisa Natsume

In order to simulate neuronal electrical activities, we must estimate the dynamics of channel conductances from physiological experimental data. However, this approach requires the formulation of differential equations that express the time course of channel conductance. On the other hand, if the dynamics are automatically estimated, neuronal activities can be easily simulated. By using a recurrent neural network (RNN), it is possible to estimate the dynamics of channel conductances without formulating the differential equations. In the present study, we estimated the dynamics of the Na+ and K+ conductances of a squid giant axon using two different fully connected RNNs and were able to reproduce various neuronal activities of the axon. The reproduced activities were an action potential, a threshold, a refractory phenomenon, a rebound action potential, and periodic action potentials with a constant stimulation. RNNs can be trained using channels other than the Na+ and K+ channels. Therefore, using our RNN estimation method, the dynamics of channel conductance can be automatically estimated and the neuronal activities can be simulated using the channel RNNs. An RNN can be a useful tool to estimate the dynamics of the channel conductance of a neuron, and by using the method presented here, it is possible to simulate neuronal activities more easily than by using the previous methods.

Robotica ◽  
2019 ◽  
Vol 38 (8) ◽  
pp. 1450-1462
Author(s):  
Farinaz Alamiyan-Harandi ◽  
Vali Derhami ◽  
Fatemeh Jamshidi

SUMMARYThis paper tackles the challenge of the necessity of using the sequence of past environment states as the controller’s inputs in a vision-based robot navigation task. In this task, a robot has to follow a given trajectory without falling in pits and missing its balance in uneven terrain, when the only sensory input is the raw image captured by a camera. The robot should distinguish big pits from small holes to decide between avoiding and passing over. In non-Markov processes such as the abovementioned task, the decision is done using past sensory data to ensure admissible performance. Applying images as sensory inputs naturally causes the curse of dimensionality difficulty. On the other hand, using sequences of past images intensifies this difficulty. In this paper, a new framework called recurrent deep learning (RDL) with combination of deep learning (DL) and recurrent neural network is proposed to cope with the above challenge. At first, the proper features are extracted from the raw image using DL. Then, these represented features plus some expert-defined features are used as the inputs of a fully connected recurrent network (as target network) to generate command control of the robot. To evaluate the proposed RDL framework, some experiments are established on WEBOTS and MATLAB co-simulation platform. The simulation results demonstrate the proposed framework outperforms the conventional controller based on DL for the navigation task in the uneven terrains.


Author(s):  
A. Chandra Obula Reddy ◽  
K. Madhavi

Complex Question answering system is developed to answer different types of questions accurately. Initially the question from the natural language is transformed to an internal representation which captures the semantics and intent of the question. In the proposed work, internal representation is provided with templates instead of using synonyms or keywords. Then for each internal representation, it is mapped to relevant query against the knowledge base. In present work, the Template representation based Convolutional Recurrent Neural Network (T-CRNN) is proposed for selecting answer in Complex Question Answering (CQA) framework. Recurrent neural network is used to obtain the exact correlation between answers and questions and the semantic matching among the collection of answers. Initially, the process of learning is accomplished through Convolutional Neural Network (CNN) which represents the questions and answers separately. Then the representation with fixed length is produced for each question with the help of fully connected neural network. In order to design the semantic matching between the answers, the representation of Question Answer (QA) pair is given into the Recurrent Neural Network (RNN). Finally, for the given question, the correctly correlated answers are identified with the softmax classifier.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fan Feng ◽  
Wuzhou Hong ◽  
Le Xie

AbstractAlthough tendon-driven continuum manipulators have been extensively researched, how to realize tip contact force sensing in a more general and efficient way without increasing the diameter is still a challenge. Rather than use a complex modeling approach, this paper proposes a general tip contact force-sensing method based on a recurrent neural network that takes the tendons’ position and tension as the input of a recurrent neural network and the tip contact force of the continuum manipulator as the output and fits this static model by means of machine learning so that it may be used as a real-time contact force estimator. We also designed and built a corresponding three-degree-of-freedom contact force data acquisition platform based on the structure of a continuum manipulator designed in our previous studies. After obtaining training data, we built and compared the performances of a multi-layer perceptron-based contact force estimator as a baseline and three typical recurrent neural network-based contact force estimators through TensorFlow framework to verify the feasibility of this method. We also proposed a manually decoupled sub-estimators algorithm and evaluated the advantages and disadvantages of those two methods.


2021 ◽  
pp. 1-14
Author(s):  
Hao Deng ◽  
Albert C. To

Abstract This paper proposes a new parametric level set method for topology optimization based on Deep Neural Network (DNN). In this method, the fully connected deep neural network is incorporated into the conventional level set methods to construct an effective approach for structural topology optimization. The implicit function of level set is described by fully connected deep neural networks. A DNN-based level set optimization method is proposed, where the Hamilton-Jacobi partial differential equations (PDEs) are transformed into parametrized ordinary differential equations (ODEs). The zero-level set of implicit function is updated through updating the weights and biases of networks. The parametrized reinitialization is applied periodically to prevent the implicit function from being too steep or too flat in the vicinity of its zero-level set. The proposed method is implemented in the framework of minimum compliance, which is a well-known benchmark for topology optimization. In practice, designers desire to have multiple design options, where they can choose a better conceptual design base on their design experience. One of the major advantages of DNN-based level set method is capable to generate diverse and competitive designs with different network architectures. Several numerical examples are presented to verify the effectiveness of proposed DNN-based level set method.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1655 ◽  
Author(s):  
Ye Tian ◽  
Yue-Ping Xu ◽  
Zongliang Yang ◽  
Guoqing Wang ◽  
Qian Zhu

This study applied a GR4J model in the Xiangjiang and Qujiang River basins for rainfall-runoff simulation. Four recurrent neural networks (RNNs)—the Elman recurrent neural network (ERNN), echo state network (ESN), nonlinear autoregressive exogenous inputs neural network (NARX), and long short-term memory (LSTM) network—were applied in predicting discharges. The performances of models were compared and assessed, and the best two RNNs were selected and integrated with the lumped hydrological model GR4J to forecast the discharges; meanwhile, uncertainties of the simulated discharges were estimated. The generalized likelihood uncertainty estimation method was applied to quantify the uncertainties. The results show that the LSTM and NARX better captured the time-series dynamics than the other RNNs. The hybrid models improved the prediction of high, median, and low flows, particularly in reducing the bias of underestimation of high flows in the Xiangjiang River basin. The hybrid models reduced the uncertainty intervals by more than 50% for median and low flows, and increased the cover ratios for observations. The integration of a hydrological model with a recurrent neural network considering long-term dependencies is recommended in discharge forecasting.


Sign in / Sign up

Export Citation Format

Share Document