scholarly journals Holographic Renormalization of Two-Point Functions in Non-AdS/Non-CFT

2010 ◽  
Vol 2010 ◽  
pp. 1-43 ◽  
Author(s):  
Michael Haack ◽  
Wolfgang Mück

We review recent progress on holographic renormalization in the context of the gauge-gravity correspondence when the bulk geometry is not asymptotically AdS. The prime example is the Klebanov-Strassler background, whose dual gauge theory has logarithmically running couplings at all energy scales. The presented formalism provides the counterterms necessary for obtaining finite two-point functions of the scalar operators in the corresponding dual gauge theories. The presentation is self-contained and reviews all the relevant background material concerning a gauge-invariant description of the fluctuations around holographic renormalization group backgrounds.

2001 ◽  
Vol 16 (11) ◽  
pp. 2101-2104 ◽  
Author(s):  
P. PANZA ◽  
R. SOLDATI

The Exact Renormalization Group (ERG) approach to massive gauge theories in the axial gauge is studied and the smoothness of the massless limit is analysed for a formally gauge invariant quantity such as the Euclidean Wilson loop.


2003 ◽  
Vol 18 (31) ◽  
pp. 5647-5711 ◽  
Author(s):  
MATTEO BERTOLINI

We review in a pedagogical manner some of the efforts aimed at extending the gauge/gravity correspondence to nonconformal supersymmetric gauge theories in four dimensions. After giving a general overview, we discuss in detail two specific examples: fractional D-branes on orbifolds and D-branes wrapped on supersymmetric cycles of Calabi–Yau spaces. We explore in particular which gauge theory information can be extracted from the corresponding supergravity solutions, and what the remaining open problems are. We also briefly explain the connection between these and other approaches, such as fractional branes on conifolds, branes suspended between branes, M5-branes on Riemann surfaces and M-theory on G2-holonomy manifolds, and discuss the role played by geometric transitions in all that.


2007 ◽  
Vol 22 (26) ◽  
pp. 4717-4796 ◽  
Author(s):  
DIEGO RODRÍGUEZ-GÓMEZ

We review the holographic duals of gauge theories with eight supercharges obtained by adding very few flavors to pure supersymmetric Yang–Mills with 16 supercharges. Assuming a brane-probe limit, the gravity duals are engineered in terms of probe branes (the so-called flavor brane) in the background of the color branes. Both types of branes intersect on a given subspace in which the matter is confined. The gauge theory dual is thus the corresponding flavoring of the gauge theory with 16 supercharges. Those theories have in general a nontrivial phase structure; which is also captured in a beautiful way by the gravity dual. Along the lines of the gauge/gravity duality, we review also some of the results on the meson spectrum in the different phases of the theories.


2004 ◽  
Vol 19 (04) ◽  
pp. 613-630 ◽  
Author(s):  
RABIN BANERJEE

We propose an exact expression for the unintegrated form of the star gauge-invariant axial anomaly in an arbitrary even dimensional noncommutative gauge theory. The proposal is based on our earlier work,7 as well as on the inverse Seiberg–Witten map and identities related to it, obtained previously15,18 by comparing Ramond–Ramond couplings in different descriptions. The integrated anomalies, found from the unintegrated ones, are expressed in terms of a simplified version of the Elliott formula involving the noncommutative Chern character. These anomalies, under the Seiberg–Witten transformation, reduce to the ordinary (integrated) axial anomalies. Compatibility with existing results of anomalies in noncommutative theories is established.


1991 ◽  
Vol 06 (04) ◽  
pp. 667-694 ◽  
Author(s):  
K.M. COSTA

The weakly coupled globally invariant Nambu-Jona-Lasino (NJL) model in 2+1 dimensions is shown to be equivalent to a strongly coupled gauge theory. This equivalence is demonstrated for the renormalized theories in the 1/N expansion utilizing an unconventional, cutoff-dependent bare coupling constant to take the limit of weak or strong bare couplings. The weakly coupled Abelian NJL model is renormalized to order 1/N and compared to a renormalized strongly coupled QED3. Next, the U(2) globally invariant NJL model is studied in the broken phase and renormalized to leading order. The resulting U(1)×U(1) gauge-invariant theory is shown to be equivalent to a spontaneously broken U(2) gauge theory analyzed in the 1/N expansion.


2009 ◽  
Vol 24 (34) ◽  
pp. 2717-2730 ◽  
Author(s):  
E. T. TOMBOULIS

We review a recently developed framework employing computable Renormalization Group (RG) decimations for gauge theories in the lattice regularization. They provide upper and lower bounds at every scale for free energies and some order parameters. By interpolating between these bounds representations of the exact quantities are obtained at progressively longer scales (coarser lattices). In the case of the SU(2) gauge theory in four dimensions RG flow to the confining strongly coupled regime is obtained for any initial coupling; whereas for the U(1) theory a fixed point is reached for small initial coupling.


2015 ◽  
Vol 30 (27) ◽  
pp. 1530054 ◽  
Author(s):  
Anosh Joseph

We review the status of recent investigations on validating the gauge-gravity duality conjecture through numerical simulations of strongly coupled maximally supersymmetric thermal gauge theories. In the simplest setting, the gauge-gravity duality connects systems of D0-branes and black hole geometries at finite temperature to maximally supersymmetric gauged quantum mechanics at the same temperature. Recent simulations show that nonperturbative gauge theory results give excellent agreement with the quantum gravity predictions, thus proving strong evidence for the validity of the duality conjecture and more insight into quantum black holes and gravity.


2001 ◽  
Vol 16 (11) ◽  
pp. 1989-2001 ◽  
Author(s):  
S. ARNONE ◽  
YU. A. KUBYSHIN ◽  
T. R. MORRIS ◽  
J. F. TIGHE

A gauge invariant regularisation for dealing with pure Yang-Mills theories within the exact renormalization group approach is proposed. It is based on the regularisation via covariant higher derivatives and includes auxiliary Pauli-Villars fields which amounts to a spontaneously broken SU(N|N) super-gauge theory. We demonstrate perturbatively that the extended theory is ultra-violet finite in four dimensions and argue that it has a sensible limit when the regularization cutoff is removed.


2005 ◽  
Vol 20 (13) ◽  
pp. 2859-2892 ◽  
Author(s):  
FARHAD ARDALAN ◽  
NÉDA SADOOGHI

The Konishi anomalies for noncommutative [Formula: see text] supersymmetric U (1) gauge theory arising from planar and nonplanar diagrams are calculated. Whereas planar Konishi anomaly is the expected ⋆-deformation of the commutative anomaly, nonplanar anomaly reflects the important features of nonplanar diagrams of noncommutative gauge theories, such as UV/IR mixing and the appearance of nonlocal open Wilson lines. We use the planar and nonplanar Konishi anomalies to calculate the effective superpotential of the theory. In the limit of vanishing |Θp|, with Θ the noncommutativity parameter, the noncommutative effective superpotential depends on a gauge invariant superfield, which includes supersymmetric Wilson lines, and has nontrivial dependence on the gauge field supermultiplet.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
I. L. Buchbinder ◽  
P. M. Lavrov

AbstractWe elaborate the generalizations of the approach to gauge-invariant deformations of the gauge theories developed in our previous work (Buchbinder and Lavrov in JHEP 06:097, 2021). In the given paper we construct the exact transformations defying the gauge-invariant deformed theory on the base of initial gauge theory with irreducible open gauge algebra. Like in [1], for the theories with open gauge algebras these transformations are the shifts of the initial gauge fields $$A \rightarrow A+h(A)$$ A → A + h ( A ) , with the help of the arbitrary and in general non-local functions h(A). The results are applied to study the quantum aspects of the deformed theories. We derive the exact relation between the quantum effective actions for the above classical theories, where one is obtained from another with the help of the deformation.


Sign in / Sign up

Export Citation Format

Share Document