scholarly journals Møller's Energy in the Kantowski-Sachs Space-Time

2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
M. Abdel-Megied ◽  
Ragab M. Gad

We have shown that the fourth component of Einstein's complex for the Kantowski-Sachs space-time is not identically zero. We have calculated the total energy of this space-time by using the energy-momentum definitions of Møller in the theory of general relativity and the tetrad theory of gravity.

2020 ◽  
Vol 33 (4) ◽  
pp. 387-394
Author(s):  
Reiner Georg Ziefle

The theory of gravity “Newtonian quantum gravity” (NQG) is an ingeniously simple theory, because it precisely predicts so-called “general relativistic phenomena,” as, for example, that observed at the binary pulsar PSR B1913 + 16, by just applying Kepler’s second law on quantized gravitational fields. It is an irony of fate that the unsuspecting relativistic physicists still have to effort with the tensor calculations of an imaginary four-dimensional space-time. Everybody can understand that a mass that moves through space must meet more “gravitational quanta” emitted by a certain mass, if it moves faster than if it moves slower or rests against a certain mass, which must cause additional gravitational effects that must be added to the results of Newton's theory of gravity. However, today's physicists cannot recognize this because they are caught in Einstein's relativistic thinking and as general relativity can coincidentally also predict these quantum effects by a mathematically defined four-dimensional curvature of space-time. Advanced NQG is also able to derive the gravitational constant G and explains why G must fluctuate. The “string theory” tries to unify quantum physics with general relativity, but as the so-called “general relativistic” phenomena are quantum physical effects, it cannot be a realistic theory. The “energy wave theory” is lead to absurdity by the author.


2019 ◽  
Vol 74 (7) ◽  
pp. 617-633 ◽  
Author(s):  
Tejinder P. Singh

AbstractWe recall a classical theory of torsion gravity with an asymmetric metric, sourced by a Nambu–Goto + Kalb–Ramond string [R. T. Hammond, Rep. Prog. Phys. 65, 599 (2002)]. We explain why this is a significant gravitational theory and in what sense classical general relativity is an approximation to it. We propose that a noncommutative generalisation of this theory (in the sense of Connes’ noncommutative geometry and Adler’s trace dynamics) is a “quantum theory of gravity.” The theory is in fact a classical matrix dynamics with only two fundamental constants – the square of the Planck length and the speed of light, along with the two string tensions as parameters. The guiding symmetry principle is that the theory should be covariant under general coordinate transformations of noncommuting coordinates. The action for this noncommutative torsion gravity can be elegantly expressed as an invariant area integral and represents an atom of space–time–matter. The statistical thermodynamics of a large number of such atoms yields the laws of quantum gravity and quantum field theory, at thermodynamic equilibrium. Spontaneous localisation caused by large fluctuations away from equilibrium is responsible for the emergence of classical space–time and the field equations of classical general relativity. The resolution of the quantum measurement problem by spontaneous collapse is an inevitable consequence of this process. Quantum theory and general relativity are both seen as emergent phenomena, resulting from coarse graining of the underlying noncommutative geometry. We explain the profound role played by entanglement in this theory: entanglement describes interaction between the atoms of space–time–matter, and indeed entanglement appears to be more fundamental than quantum theory or space–time. We also comment on possible implications for black hole entropy and evaporation and for cosmology. We list the intermediate mathematical analysis that remains to be done to complete this programme.


2005 ◽  
Vol 20 (28) ◽  
pp. 2175-2182 ◽  
Author(s):  
MUSTAFA SALTI

Considering the Møller energy definition in both Einstein's theory of general relativity and tele-parallel theory of gravity, we find the energy of the universe based on viscous Kasner-type metrics. The energy distribution which includes both the matter and gravitational field is found to be zero in both of these different gravitation theories and this result agrees with previous works of Cooperstock and Israelit et al., Banerjee–Sen, Vargas who investigated the problem of the energy in Friedmann–Robertson–Walker universe in Einstein's theory of general relativity and Aydogdu–Saltı who considered the same problem in tele-parallel gravity. In all of these works, they found that the energy of the Friedmann–Robertson–Walker spacetime is zero. Our result is the same as that obtained in the studies of Saltı and Havare. They used the viscous Kasner-type metric and found the total energy and momentum by using Bergmann–Thomson energy–momentum formulation in both general relativity and tele-parallel gravity. The result that the total energy and momentum components of the universe is zero supports the viewpoints of Albrow and Tryon.


Author(s):  
Biswaranjan Dikshit

Einstein’s theory of general relativity which has been experimentally proved to be true theory of gravity doesn’t need gravitational potential energy to predict trajectory of particles in space. This is because general relativity is a purely geometric theory. Objects move along the geodesics in the curved space-time. The energy-momentum tensor that warps the space-time as per Einstein’s field equations takes into account only the energy/momentum of matter and radiation. Thus, gravitational potential energy doesn’t come into picture in Einstein’s theory of gravity and its role is taken over by curvature of space-time. However, general relativistically correct expression for gravitational potential energy is required for energy conservation and some energy-based approaches in physics. Conventionally, correct form of gravitational potential energy is derived by using full mathematical formality of general relativity. In this paper, we describe an event by which we derive the same general relativistic expression for gravitational potential energy simply by using the principle of equivalence and gravitational time dilation.


1997 ◽  
Vol 12 (27) ◽  
pp. 4831-4835 ◽  
Author(s):  
K. S. Virbhadra

We show that the well-known most general static and spherically symmetric exact solution to the Einstein-massless scalar equations given by Wyman is the same as one found by Janis, Newman and Winicour several years ago. We obtain the energy associated with this space–time and find that the total energy for the case of the purely scalar field is zero.


Author(s):  
F. P. POULIS ◽  
J. M. SALIM

Motivated by an axiomatic approach to characterize space-time it is investigated a reformulation of Einstein's gravity where the pseudo-riemannian geometry is substituted by a Weyl one. It is presented the main properties of the Weyl geometry and it is shown that it gives extra contributions to the trajectories of test particles, serving as one more motivation to study general relativity in Weyl geometry. It is introduced its variational formalism and it is established the coupling with other physical fields in such a way that the theory acquires a gauge symmetry for the geometrical fields. It is shown that this symmetry is still present for the red-shift and it is concluded that for cosmological models it opens the possibility that observations can be fully described by the new geometrical scalar field. It is concluded then that this reformulation, although representing a theoretical advance, still needs a complete description of their objects.


Sign in / Sign up

Export Citation Format

Share Document