scholarly journals New stability indicating RP-HPLC-PDA method for determination of mifepristone in bulk and tablet formulation

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohammad Mojeeb Gulzar Khan ◽  
Mohammad Faizan Saadique Deshmukh ◽  
Sandip Dinkar Firke ◽  
Abdul Talib Abdul Wahab ◽  
Mohan Ganpatrao Kalaskar ◽  
...  

Abstract Background Mifepristone is progestational and glucocorticoid hormone antagonist. The objective of this study is to develop simple and economical stability indicating RP-HPLC method for the determination of mifepristone in bulk and tablet formulation. Result The chromatographic separation was achieved on Qualisil BDS C8 column with mobile phase containing of mixture of Buffer (Potassium dihydrogen ortho phosphate, pH to 3.0 with ortho phosphoric acid) and Organic Solvent (Acetonitrile) 60:40 v/v pumped at flow rate 0.6 mL min−1. The detection of elute was performed using PDA detector at 305 nm. Mifepristone was eluted at 8.67 min. According to international conference on harmonization Q2(R1) guideline, method was validated and shows satisfactory results for accuracy, precision, linearity, ruggedness, robustness, detection limit, quantitation limit. The method indicated to be linear in the series of concentration 3–18 µg mL−1, and correlation coefficient was 0.9997. In acidic, basic, oxidative, thermal, photolytic forced degradation conditions, the peak of degradation product was clearly and well separated from drug peak without any interference in quantitative analysis. This represents stability indicating nature of established method. Conclusion The established RP-HPLC method is simple, accurate, specific, precise, robust, rugged, sensitive, and economical in nature which can be utilized for routine analysis of mifepristone in bulk and pharmaceutical formulation.

2010 ◽  
Vol 7 (1) ◽  
pp. 246-252 ◽  
Author(s):  
S. K. Patro ◽  
S. K. Kanungo ◽  
V. J. Patro ◽  
N. S. K. Choudhury

A simple, rapid and accurate and stability indicating RP-HPLC method was developed for the determination of valsartan in pure and tablet forms. The method showed a linear response for concentrations in the range of 50-175 µg/mL using 0.01 M NH4H2PO4(pH 3.5) buffer: methanol [50:50] as the mobile phase with detection at 210 nm and a flow rate of 1 mL/min and retention time 11.041 min. The method was statistically validated for accuracy, precision, linearity, ruggedness, robustness, forced degradation, solution stability and selectivity. Quantitative and recovery studies of the dosage form were also carried out and analyzed; the % RSD from recovery studies was found to be less than 1. Due to simplicity, rapidity and accuracy of the method, we believe that the method will be useful for routine quality control analysis.


2020 ◽  
Vol 13 (1) ◽  
pp. 44-51
Author(s):  
S.Afreen Sultana ◽  
Patta. Salomi ◽  
T. VimalakKannan ◽  
K.Ravindra Reddy

In present study, accurate, precise, rapid and sensitive stability indicting HPLC-UV method has been established for quantification of Telmisartan, Cilnidipine and Chlorthalidone simultaneously in Tablet and bulk. Telmisartan, Cilnidipine and Chlorthalidone were resoluted on Sunsil C18 column (4.6mmx250mm; 5μm) using mobile phase containing Acetonitrile and Potassium dihydrogen phosphate in 50:50(v/v) ratio with flow rate of 1ml/min at 238 nm. Concentrations were linear over the range of 40-120 μg/ml for Telmisartan, 10-30 μg/ml for Cilnidipine and 6.25-18.75 μg/ml for Chlorthalidone. The percentage recovery was found to be 99.70-100.51% for Telmisartan, 98.41-100.49% for Cilnidipine and 99.34-100.48% for Chlorthalidone. % RSD for peak area was 0.069% for Telmisartan, 0.058% for Cilnidipine and 0.057% for Chlorthalidone shows that the proposed method is precise. Force-degradation studies have not shown any observable change in the results and hence the proposed method is stability indicating and hence the method is suitable for routine analysis of Telmisartan, Cilnidipine and Chlorthalidone in bulk and tablet dosage form.


Author(s):  
Murlidhar V. Zope ◽  
Rahul M. Patel ◽  
Ashwinikumari Patel ◽  
Samir G. Patel

Objective: The objective of the current study was to develop and validate a simple, robust, precise and accurate RP-HPLC (reverse phase-high performance liquid chromatography) method for the quantitative determination of potential degradation products of Difluprednate (DIFL) in the ophthalmic emulsion.Methods: Chromatographic separation was achieved on the YMC pack ODS-AQ (150× 4.6) mm, 3μm column with a mobile phase containing a gradient mixture of mobile phase A (0.02M Ammonium formate buffer pH 4.5 adjusted with formic acid) and Acetonitrile as mobile phase B, at flow rate of 1.5 ml/min and with UV detection at 240 nm.Results: The peak retention time of DIFL was found at about 17.2 min, the RRT of degradation product-1 (DP-1), degradation product-2 (DP-2), and degradation product-3 (DP-3), were found to be about 0.49, 0.65 and 0.79 respectively (calculated with respect to Difluprednate). Stress testing was performed in accordance with an ICH (international council for harmonisation) guideline Q1A (R2) [1]. The method was validated as per ICH guideline Q2 (R1)[2]. The calibration curve was found to be linear in the concentration range of 0.1 to 0.75 µg/ml for Difluprednate, DP-1, DP-2 and DP-3. The LOD (Limit of detection) was found to be 0.1µg/ml and LOQ (Limit of quantification) of 0.15µg/ml for Difluprednate, DP-1, DP-2 and DP-3 respectively. The recovery from LOQ to 150% was within 90-110%. The forced degradation data confirms the stability indicating the nature of the method.Conclusion: A simple, robust, precise and accurate RP-HPLC method for the quantitative determination of potential degradation products of Difluprednate in the ophthalmic emulsion was developed and validated. 


Author(s):  
KANCHARLA VIJAYALAKSHMI ◽  
BETHAPUDI SAMUEL ANAND ANDREWS ◽  
BOLINENI NAGESWARA RAO

Objective: We have developed a “stability-indicating RP-HPLC” procedure for the Bilastine (BLS) and montelukast (MTL) analysis of tablets. Methods: The quantification of BLS and MTL combination was implemented utilising a Waters column (C18, 5 μm, 250 mm and 4.6 mm). Isocratic mobile phase had 60% volume KH2PO4 of 0.1M strength with pH 4.2 units and 40% volume methanol at a flow with 1.0 ml/min speed. UV detection at 232 nm was done to examine BLS and MTL. Stability experiments of BLS and MTL under distinctive environments of stress were also performed. Results: The BLS and MTL were eluted at 1.810 min and 2.551 min, respectively. The responses were found to be linear for the concentration ranges of 10-30 µg/ml (BLS) and 5-15 µg/ml (MTL). Percent comparative standard deviance for precision was 0.331% (BLS) and 0.486% (MTL). Percent assay for accuracy was 98.96% (BLS) and 99.00% (MTL). The detection limit and quantitation limit measures for BLS were 0.018 µg/ml and 0.059 µg/ml, respectively, while for MTL it was 0.024 µg/ml and 0.081 µg/ml, respectively. Robustness studies authorized that the method is robust with percent comparative standard deviance of a highest 1.950%. Conclusion: The developed “stability-indicating RP-HPLC” procedure for the BLS and MTL analysis is simple, sensitive, precise, specific and robust, making it appropriate to the assessment of BLS and MTL in a tablet formulation.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (08) ◽  
pp. 48-52
Author(s):  
K. P Parekh ◽  
◽  
A. P. Jadhav

A simple, accurate, precise, robust stability indicating RP-HPLC method was developed and validated for simultaneous estimation of berberine and curcumin in an ayurvedic formulation. The two markers were resolved using a C-18 column using as the mobile phase methanol: water (pH 3 adjusted using acetic acid) in the ratio 75:25 V/V at a flow rate of 1mL/min. Retention times of berberine and curcumin were 2.58 ± 0.2 min and 8.5 ± 0.2 min, respectively at 358 nm. Linear response was observed in the concentration range of 2 – 8 ppm for berberine and 5 – 40 ppm for curcumin, with correlation coefficient (r2) of 0.994 and 0.998 for berberine and curcumin, respectively. The developed method was applied for quantitation of markers in marketed and in-house formulations of Gruhadhoomadi Churna. This method can also be used to evaluate formulations containing berberine and curcumin as markers, thus conforming to the need of ensuring quality and safety of herbal medicines.


2010 ◽  
Vol 93 (2) ◽  
pp. 523-530 ◽  
Author(s):  
Sérgio Luiz Dalmora ◽  
Maximiliano da Silva Sangoi ◽  
Daniele Rubert Nogueira ◽  
Lucélia Magalhães da Silva

Abstract An RP-HPLC method was validated for the determination of entecavir in tablet dosage form. The HPLC method was carried out on a Gemini C18 column (150 4.6 mm id) maintained at 30C. The mobile phase consisted of acetonitrilewater (95 + 5, v/v)/potassium phosphate buffer (0.01 M, pH 4; 9 + 91, v/v) pumped at a flow rate of 1.0 mL/min. Photodiode array detection was at 253 nm. The chromatographic separation was obtained with a retention time of 4.18 min, and the method was linear in the range of 0.5200 g/mL (r2 0.9998). The specificity and stability-indicating capability of the method was proven through forced degradation studies, which also showed that there was no interference of the excipients and an increase of the cytotoxicity only by the basic condition. The accuracy was 101.19, with bias lower than 1.81. The LOD and LOQ were 0.39 and 0.5 g/mL, respectively. Method validation demonstrated acceptable results for precision and robustness. The proposed method was applied for the analysis of tablet formulations, to improve QC and assure therapeutic efficacy.


2016 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
Megha Sharma ◽  
Neeraj Mahindroo

Objective: The objective of the present study was to develop and validate a novel stability indicating reverse phase-high performance liquid chromatography (RP-HPLC) method for determination of β-acetyldigoxin, an active pharmaceutical ingredient (API).Methods: The chromatographic separation was carried out on Agilent Technologies 1200 series HPLC system equipped with photo diode array detector and C-18 (4.6x250 mm, 5 µ) column. The mobile phase consisted of water: acetonitrile (65:35 v/v), delivered at a flow rate of 1.5 ml/min and eluents were monitored at 225 nm.Results: The retention time of β-acetyldigoxin was 9.2 min. The method was found to be linear (R2= 0.9995) in the range of 31.25-500 µg/ml. The accuracy studies showed the mean percent recovery of 101.02%. LOD and LOQ were observed to be 0.289 µg/ml and 0.965 µg/ml, respectively. The method was found to be robust and system suitability testing was also performed. Forced degradation analysis was carried out under acidic, alkaline, oxidative and photolytic stress conditions. Significant degradation was observed under tested conditions, except for oxidative condition. The method was able to separate all the degradation products within runtime of 20 min and was able to determine β-acetyldigoxin unequivocally in presence of degradation products.Conclusion: The novel, economic, rapid and simple method for analysis of β-acetyldigoxin is reported. The developed method is suitable for routine quality control and its determination as API, and in pharmaceutical formulations and stability study samples.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Roghaieh Khoshkam ◽  
Minoo Afshar

A rapid and stability-indicating RP-HPLC method was developed for determination of l-carnitine in tablets. The separation was based on a C18 analytical column using a mobile phase which consisted of 0.05 M phosphate buffer (pH = 3): ethanol (99 : 1), including 0.56 mg/mL of sodium 1-heptanesulfonate. Column temperature was set at 50°C and quantitation was achieved by UV detection at 225 nm. In forced degradation studies, the drug was subjected to oxidation, hydrolysis, photolysis, and heat. Among the different stress conditions, the exposure to acidic and basic conditions was found to be an important adverse stability factor. The method was validated for specificity, selectivity, linearity, precision, accuracy, and robustness. The applied procedure was found to be linear in l-carnitine concentration range of 84.74–3389.50 µg/mL (r2=0.9997). Precision was evaluated by replicate analysis in which relative standard deviation (RSD) values for areas were found below 2.0%. The recoveries obtained (100.83%–101.54%) ensured the accuracy of the developed method. The expanded uncertainty (3.14%) of the method was also estimated from method validation data. Accordingly, the proposed validated and rapid procedure was proved to be suitable for routine analyzing and stability studies of l-carnitine in tablets.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0244951
Author(s):  
Hany W. Darwish ◽  
Nesma A. Ali ◽  
Ibrahim A. Naguib ◽  
Mohamed R. El Ghobashy ◽  
Abdullah M. Al-Hossaini ◽  
...  

A reliable, selective and sensitive stability-indicating RP-HPLC assay was established for the quantitation of bromazepam (BMZ) and one of the degradant and stated potential impurities; 2-(2-amino-5-bromobenzoyl) pyridine (ABP). The assay was accomplished on a C18 column (250 mm × 4.6 mm i.d., 5 μm particle size), and utilizing methanol-water (70: 30, v/v) as the mobile phase, at a flow rate of 1.0 ml min-1. HPLC detection of elute was obtained by a photodiode array detector (DAD) which was set at 230 nm. ICH guidelines were adhered for validation of proposed method regarding specificity, sensitivity, precision, linearity, accuracy, system suitability and robustness. Calibration curves of BMZ and ABP were created in the range of 1–16 μg mL-1 with mean recovery percentage of 100.02 ± 1.245 and 99.74 ± 1.124, and detection limit of 0.20 μg mL-1 and 0.24 μg mL-1 respectively. BMZ stability was inspected under various ICH forced degradation conditions and it was found to be easily degraded in acidic and alkaline conditions. The results revealed the suitability of the described methodology for the quantitation of the impurity (ABP) in a BMZ pure sample. The determination of BMZ in pharmaceutical dosage forms was conducted with the described method and showed mean percentage recovery of 99.39 ± 1.401 and 98.72 ± 1.795 (n = 6), respectively. When comparing the described procedure to a reference HPLC method statistically, no significant differences between the two methods in regard to both accuracy and precision were found.


2021 ◽  
Vol 9 (1) ◽  
pp. 141-149
Author(s):  
Romana Mahivish ◽  
Manjunath SY ◽  
Hemant Kumar

A simple, rapid, accurate and precise RP-HPLC method was developed and validated for the determination of zileuton in table dosage form. Chromatographic analysis of the drug was achieved on Cyberlab HPLC comprising of LC- 100P pump, a variable wavelength programmable LC-UV100 UV detector and SCL system controller.  Flowrosil C18 column (250 mm x 4.6 mm, 5 μ) as stationary phase with mobile phase consisting of Methanol: Acetonitrile: 1% GAA in the ratio of 70:10:20 v/v. The method showed a good linear response in the concentration range of 5-30 μg/ml with correlation coefficient of 0.9993. The flow rate was maintained at 1.0 ml/min and detection was carried out at 230 nm. The retention time was 3.12 min. The method was statistically validated for accuracy, precision, linearity, ruggedness, robustness, solution stability, selectivity and sensitivity. The results obtained in the study were within the limits of ICH guidelines and hence this method can be used for the determination of zileuton in tablet formulation.


Sign in / Sign up

Export Citation Format

Share Document