scholarly journals An Existence and Uniqueness Result for a Bending Beam Equation without Growth Restriction

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Yongxiang Li ◽  
He Yang

We discuss the solvability of the fourth-order boundary value problemu(4)=f(t,u,u′′),0≤t≤1,u(0)=u(1)=u′′(0)=u′′(1)=0, which models a statically bending elastic beam whose two ends are simply supported, wheref:[0,1]×R2→Ris continuous. Under a condition allowing thatf(t,u,v)is superlinear inuandv, we obtain an existence and uniqueness result. Our discussion is based on the Leray-Schauder fixed point theorem.

2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Jianjie Wang ◽  
Ali Mai ◽  
Hong Wang

Abstract This paper is mainly devoted to the study of one kind of nonlinear Schrödinger differential equations. Under the integrable boundary value condition, the existence and uniqueness of the solutions of this equation are discussed by using new Riesz representations of linear maps and the Schrödinger fixed point theorem.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Nichaphat Patanarapeelert ◽  
Thanin Sitthiwirattham

The existence and uniqueness results of two fractional Hahn difference boundary value problems are studied. The first problem is a Riemann-Liouville fractional Hahn difference boundary value problem for fractional Hahn integrodifference equations. The second is a fractional Hahn integral boundary value problem for Caputo fractional Hahn difference equations. The Banach fixed-point theorem and the Schauder fixed-point theorem are used as tools to prove the existence and uniqueness of solution of the problems.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
J. Caballero ◽  
J. Harjani ◽  
K. Sadarangani

The purpose of this paper is to investigate the existence and uniqueness of positive solutions for the following fourth-order boundary value problem: , , . Moreover, under certain assumptions, we will prove that the above boundary value problem has a unique symmetric positive solution. Finally, we present some examples and we compare our results with the ones obtained in recent papers. Our analysis relies on a fixed point theorem in partially ordered metric spaces.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jian Liu ◽  
Zengqin Zhao

We study the nonlinear nonhomogeneousn-point generalized Sturm-Liouville fourth-orderp-Laplacian boundary value problem by using Leray-Schauder nonlinear alternative and Leggett-Williams fixed-point theorem.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 476
Author(s):  
Jiraporn Reunsumrit ◽  
Thanin Sitthiwirattham

In this paper, we propose sequential fractional delta-nabla sum-difference equations with nonlocal fractional delta-nabla sum boundary conditions. The Banach contraction principle and the Schauder’s fixed point theorem are used to prove the existence and uniqueness results of the problem. The different orders in one fractional delta differences, one fractional nabla differences, two fractional delta sum, and two fractional nabla sum are considered. Finally, we present an illustrative example.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu ◽  
Ravi P. Agarwal

We prove the existence and uniqueness of solutions for two classes of infinite delay nonlinear fractional order differential equations involving Riemann-Liouville fractional derivatives. The analysis is based on the alternative of the Leray-Schauder fixed-point theorem, the Banach fixed-point theorem, and the Arzela-Ascoli theorem inΩ={y:(−∞,b]→ℝ:y|(−∞,0]∈ℬ}such thaty|[0,b]is continuous andℬis a phase space.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Imed Bachar ◽  
Said Mesloub

We consider singular nonlinear Hadamard fractional boundary value problems. Using properties of Green’s function and a fixed point theorem, we show that the problem has positive solutions which blow up. Finally, some examples are provided to explain the applications of the results.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yongxiang Li ◽  
Qiuyan Liang

We discuss the existence of solution for the fully fourth-order boundary value problemu(4)=f(t,u,u′,u′′,u′′′),0≤t≤1,u(0)=u(1)=u′′(0)=u′′(1)=0. A growth condition onfguaranteeing the existence of solution is presented. The discussion is based on the Fourier analysis method and Leray-Schauder fixed point theorem.


Sign in / Sign up

Export Citation Format

Share Document