scholarly journals Large Carpenter Bees as Agricultural Pollinators

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Tamar Keasar

Large carpenter bees (genusXylocopa) are wood-nesting generalist pollinators of broad geographical distribution that exhibit varying levels of sociality. Their foraging is characterized by a wide range of food plants, long season of activity, tolerance of high temperatures, and activity under low illumination levels. These traits make them attractive candidates for agricultural pollination in hot climates, particularly in greenhouses, and of night-blooming crops. Carpenter bees have demonstrated efficient pollination service in passionflower, blueberries, greenhouse tomatoes and greenhouse melons. Current challenges to the commercialization of these attempts lie in the difficulties of mass-rearingXylocopa, and in the high levels of nectar robbing exhibited by the bees.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
John B. Lowe ◽  
Richard T. Baker

Ordered mesoporous silica materials are of interest for a wide range of applications. In many of these, elevated temperatures are used either in the preparation of the material or during its use. Therefore, an understanding of the effect of high temperature treatments on these materials is desirable. In this work, a detailed structural study is performed on silicas with three representative pore structures: a 2-D hexagonal pore arrangement (SBA-15), a continuous 3D cubic bimodal pore structure (KIT-6), and a 3D large cage pore structure (FDU-12). Each silica is studied as prepared and after treatment at a series of temperatures between 300 and 900°C. Pore structures are imaged using Transmission Electron Microscopy. This technique is used in conjunction with Small-Angle X-ray Diffraction, gas physisorption, and29Si solid state Nuclear Magnetic Resonance. Using these techniques, the pore size distributions, the unit cell dimensions of the mesoporous structures, and the relative occupancy of the distinct chemical environments of Si within them are cross correlated for the three silicas and their evolution with treatment temperature is elucidated. The physical and chemical properties before, during, and after collapse of these structures at high temperatures are described as are the differences in behavior between the three silica structures.


Author(s):  
D. W. Minter

Abstract A description is provided for Helminthosphaeria stuppea, which is apparently saprobic and able to colonize woody parts of a wide range of plants. Some information on its associated organisms and substrata, habitats, dispersal and transmission, and conservation status is given, along with details of its geographical distribution (North America (USA (California, Colorado, Utah and Washington)), Europe (Austria, Czech Republic, Denmark, France and UK)) and hosts (including Tsuga mertensiana). No reports of negative economic impacts have been found.


Author(s):  

Abstract A new distribution map is provided for Bactrocera papayae Drew & Hancock Diptera: Tephritidae. Attacks a wide range of fleshy fruits and vegetables. Information is given on the geographical distribution in ASIA, Brunei, Christmas Island, Indonesia, Bali, Flores, Java, Kalimantan, Lombok, Sulawesi, Sumbawa, Timor, Malaysia, Sabah, Peninsular Malaysia, Singapore, Thailand, AUSTRALASIA, Australia, Queensland, Indonesia, Irian Jaya, Papua New Guinea.


Author(s):  
J. E. M. Mordue

Abstract A description is provided for Ustilago hypodytes. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: A wide range of grasses, including species of Agropyron (many), Ammophila, Brachypodium, Bromus, Calamagrostis, Diplachne, Distichlis, Elymus (many), Festuca, Glyceria, Hilaria, Hordeum, Haynaldia, Lygeum, Melica, Orysopsis, Panicum, Phalaris, Phleum, Poa (many), Puccinellia, Secale, Sitanion, Sporobolus, Stipa (many), and Trisetum. DISEASE: Stem smut of grasses. GEOGRAPHICAL DISTRIBUTION: Chiefly a temperate species found in Europe (including Denmark, Finland, France, Germany, Hungary, Italy, Romania, Sweden, Switzerland, UK, USSR, Yugoslavia) and North America (Canada, USA) and extending to central and South America (Argentina, Peru, Uruguay), N. Africa (Libya, Morocco, Tunisia), Japan, Australia and New Zealand. TRANSMISSION: Not fully understood, though inoculation experiments have demonstrated that infection occurs in mature vegetative plants (possibly through meristematic tissue), not seeds or flowers (22, 240; 24, 511). Once established, infection is systemic, probably overwintering in the root system and spreading by vegetative multiplication of host plants as well as from plant to plant (24, 511; 19, 720).


Author(s):  
G. M. Waterhouse

Abstract A description is provided for Pythium intermedium. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On a wide range of hosts represented by the following families: Begoniaceae, Bromeliaceae, Chenopodiaceae, Compositae, Coniferae, Cruciferae, Euphorbiaceae, Geraniaceae, Gramineae, Leguminosae, Liliaceae, Linaceae, Moraceae, Onagraceae, Ranunculaceae, Rosaceae, Solanaceae, Ulmaceae, Violaceae; also in the Equisetales and Filicales. DISEASES: Damping-off of seedlings, foot rot and root rot of ornamentals, occasionally of crop plants and trees. GEOGRAPHICAL DISTRIBUTION: Asia (China); Australia & Oceania (Hawaii); Europe (England, Belgium, France, Germany, Holland, Sweden, U.S.S.R.); North America (U.S.A.); South America (Argentina). TRANSMISSION: A common soil inhabitant.


Author(s):  
D. Brayford

Abstract A description is provided for Cylindrocarpon olidum var. olidum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Wide range. At IMI there are records on: Asparagus, Camellia, Cocos, Cordylina, Heterodera (nematode), Medicago saliva, Narcissus, Pelargonium, Picea, Pinus, Pyrus, Secale, Solanum.DISEASE: Root rotting. GEOGRAPHICAL DISTRIBUTION: Africa: Ghana, Zimbabwe; Australasia: Australia; Europe: Germany, Great Britain; North America: Canada, Honduras, USA. TRANSMISSION: Soil-borne; slimy spores are probably spread by water.


Author(s):  
C. Booth

Abstract A description is provided for Gibberella fujikuroi var. subglutinans. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On several hosts of economic importance in the Gramineae; also on a wide range of hosts represented by the following families: Amaryllidaceae, Anacardiaceae, Bromeliaceae, Chenopodiaceae, Convolvulaceae, Cruciferae, Iridaceae, Leguminosae, Liliaceae, Malvaceae, Marantaceae, Musaceae, Palmae, Rosaceae, Rutaceae, Sterculiaceae (14: 708; 31: 515; 36: 501; 40: 89 and Herb. IMI). DISEASES: Causes a seedling blight, and root, stalk and kernel rot of maize; also on heads and stalks of sorghum associated with a foot and stem rot, and causing a stem rot and top rot of sugar-cane ('pokkah boeng'). Other records include a wilt of Crotalaria, a heart rot of leaves of banana and Manila hemp, and fruit rot of banana, cacao and pineapple. There appear to be no references to pathogenicity to rice. Also entomogenous on cereal stem borer larvae and other insects (27: 71; 33: 382; 38: 141, 740). GEOGRAPHICAL DISTRIBUTION: Africa (Central African Republic, Congo, Ghana, Ivory Coast, Kenya, Mauritius, Morocco, Reunion, Sierra Leone, South Africa, Southern Rhodesia, Tanganyika, Uganda); Asia (Formosa (Taiwan), Hong Kong, India, Java, Indo-China, Philippines, Syria); Australasia (Hawaii, New South Wales, New Zealand, Victoria); Europe (Czechoslovakia, Germany,? Italy, Poland, Romania); Central America & West Indies (French Antilles, Honduras, Trinidad); North America (Canada, United States); South America (Argentina, Peru). (CMI Map 191). TRANSMISSION: Both seed and soil-borne. Air-borne ascospores produced from perithecia on over-wintered plant debris or on dead stalks of sugar-cane at the beginning of the rainy season are also important sources of infection (30: 344). The pathogen may also be disseminated on pupae and adults of cereal stem borers and their parasites in sugar-cane (33: 382).


Author(s):  
G. M. Waterhouse

Abstract A description is provided for Phytophthora nicotianae var. parasitica. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On a very wide range of host plants comprising 58 families including: avocado, castor, Cinchona spp., citrus, cotton, eggplant, guava, lucerne, papaw, parsley, pineapple, Piper betle, rhubarb, sesame, strawberry, tomato. DISEASES: Damping-off of seedlings (tomato, castor, citrus, cotton); root rot (citrus, avocado, strawberry, lucerne); crown rot (parsley, rhubarb, strawberry, lucerne); brown stem rot of tobacco; stem canker and tip blight of Cinchona spp. ; leaf blight (castor, sesame, pineapple, Piper betle) and fruit rot (citrus, tomato, guava, papaw, eggplant). GEOGRAPHICAL DISTRIBUTION: Africa (Ethiopia, Mali, Madagascar, Mauritius, Morocco, Nigeria, Sierra Leone, Southern Rhodesia, Tanganyika); Asia (Burma, Ceylon, China, Formosa, India, Israel, Japan, Java, Malaya, Philippines); Australia & Oceania (Australia, Hawaii, Tasmania); Europe (Cyprus, France, Germany, Great Britain, Holland, Ireland, Italy, Poland, Portugal, U.S.S.R.); North America (Bermuda, Canada, Mexico, U.S.A.); Central America & West Indies (Costa Rica, Cuba, El Salvador, Guatemala, Jamaica, Montserrat, Puerto Rico, Trinidad);. South America (Argentina, Brazil, British Guiana, Colombia, Paraguay, Peru, Venezuela). TRANSMISSION: Soil-borne, spreading rapidly after heavy rain or where soil remains moist or water-logged (40: 470). Also recorded in drainage water in India and in reservoirs and canals supplying citrus groves in U.S.A. (23: 45; 39: 24). A method for determining a disease potential index in soil using lemon fruit has been described (38: 4). Also present in testas of seeds from diseased citrus fruit which may infect nursery seedbeds (37: 165).


Author(s):  
G. M. Waterhouse

Abstract A description is provided for Pythium aphanidermatum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On a wide range of hosts, often similar to those attacked by P. butleri, but inducing different symptoms, represented in the following families: Amaranthaceae, Amaryllidaceae, Araceae, Basellaceae, Bromeliaceae, Cactaceae, Chenopodiaceae, Compositae, Coniferae, Convolvulaceae, Cruciferae, Cucurbitaceae, Euphorbiaceae, Gramineae, Leguminosae, Linaceae, Malvaceae, Moraceae, Passifloraceae, Rosaceae, Solanaceae, Umbelliferae, Violaceae, Vitaceae, Zingiberaceae. DISEASES: Damping-off of various seedlings; 'cottony-leak' of cucurbit fruit in storage; 'cottony blight' of turf grasses; root and stalk rot of maize. Other hosts: tobacco, sugar-beet, sugar-cane, papaw, pineapple, ginger, bean and cotton. GEOGRAPHICAL DISTRIBUTION: Africa (Central African Republic, Fernando, Ghana, Kenya, Malawi, Mali, Nigeria, Sierra Leone, South Africa, Southern Rhodesia, Sudan, Togo, Zambia); Asia (Ceylon, China, Formosa, India, Indonesia, Israel, Japan, Java, Malaya, Philippines, Sumatra); Australasia & Oceania (Australia, Hawaii, New Caledonia); North America (Canada, Mexico); Central America & West Indies (Antilles, Jamaica, Puerto Rico); South America (Argentina, Brazil, Peru, Venezuela); Europe Austria, Cyprus, Czechoslovakia, Great Britain, Greece, Holland, Italy, Poland, U.S.S.R., Yugoslavia). (CMI Map 309) TRANSMISSION: Soil-borne. Eggplant fruit become infected when blossom end is in contact with soil (5: 465). Readily isolated from soil using fresh potato cubes treated with streptomycin and pimaricin as baits (43, 1519; 43, 46) or seedling papaw roots in soil containing papaw tissue (43, 1720). Also recorded as seed-borne on tomato and cucurbits but doubtful whether seed-transmitted (see Noble et al., An Annotated List of Seed-Borne Diseases, 1958, pp. 23, 25, 124).


Sign in / Sign up

Export Citation Format

Share Document