scholarly journals Response of the Duffing-Van der Pol Oscillator under Position Feedback Control with Two Time Delays

2011 ◽  
Vol 18 (1-2) ◽  
pp. 377-386
Author(s):  
Xinye Li ◽  
Huabiao Zhang ◽  
Lijuan Zhang

In this paper, the dynamics of Duffing-van der Pol oscillators under linear-plus-nonlinear position feedback control with two time delays is studied analytically and numerically. By the averaging method, together with truncation of Taylor expansions for those terms with time delay, the slow-flow equations are obtained from which the trivial and nontrivial solutions can be found. It is shown that the trivial solution can be stabilized by appropriate gain and time delay in linear feedback although it loses its stability via Hopf bifurcation and results in periodic solution for uncontrolled systems. And the stability of the trivial solution is independent of nonlinear feedback. Different from the case of the trivial solution, the stability of nontrivial solutions is also associated with nonlinear feedback besides linear feedback. Non-trivial solutions may lose their stability via saddle-node or Hopf bifurcation and the resulting response of the system may be quasi-periodic or chaotic. The feedback gains and time delays have great effects on the amplitude of the periodic solutions and their bifurcation control. The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical results.

2012 ◽  
Vol 204-208 ◽  
pp. 4586-4589
Author(s):  
Chang Jin Xu ◽  
Pei Luan Li ◽  
Ling Yun Yao

In this paper, the dynamics of a van der pol model with delay are considered. It is shown that the asymptotic behavior depends crucially on the time delay parameter. By regarded the delay as a bifurcation parameter, we are particularly interested in the study of the Hopf bifurcation problem. The length of delay which preserves the stability of the equilibrium is calculated. Some numerical simulations for justifying the analytical findings are included.


2020 ◽  
Vol 13 (05) ◽  
pp. 2050034
Author(s):  
Chunyan Gao ◽  
Haihong Liu ◽  
Zengrong Liu ◽  
Yuan Zhang ◽  
Fang Yan

Biological experiments clarify that p53-Mdm2 module is the core of tumor network and p53 oscillation plays an important role in determining the tumor cell fate. In this paper, we investigate the effect of time delay on the oscillatory behavior induced by Hopf bifurcation in p53-Mdm2 system. First, the stability of the unique positive equilibrium point and the existence of Hopf bifurcation are investigated by using the time delay as the bifurcation parameter and by applying the bifurcation theory. Second, the explicit criteria determining the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are developed based on the normal form theory and the center manifold theorem. In addition, the combination of numerical simulation results and theoretical calculation results indicates that time delays in p53-Mdm2 system are critical for p53 oscillations. The results may help us to better understand the biological functions of p53 pathway and provide clues for treatment of cancer.


2007 ◽  
Vol 17 (04) ◽  
pp. 1367-1374 ◽  
Author(s):  
QIAN GUO ◽  
CHANGPIN LI

In this paper, we study Hopf bifurcation of a second-order nonlinear differential equation with time delay by using the Lyapunov–Schmidt reduction. The approximate analytical expressions of the periodic solutions bifurcated from the trivial solution are given. We also discuss the stability of these periodic solutions. The numerical simulations line up with the theoretical results.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2444
Author(s):  
Yani Chen ◽  
Youhua Qian

In this paper, the normal form and central manifold theories are used to discuss the influence of two-degree-of-freedom coupled van der Pol oscillators with time delay feedback. Compared with the single-degree-of-freedom time delay van der Pol oscillator, the system studied in this paper has richer dynamical behavior. The results obtained include: the change of time delay causing the stability switching of the system, and the greater the time delay, the more complicated the stability switching. Near the double Hopf bifurcation point, the system is simplified by using the normal form and central manifold theories. The system is divided into six regions with different dynamical properties. With the above results, for practical engineering problems, we can perform time delay feedback adjustment to make the system show amplitude death, limit loop, and so on. It is worth noting that because of the existence of unstable limit cycles in the system, the limit cycle cannot be obtained by numerical solution. Therefore, we derive the approximate analytical solution of the system and simulate the time history of the interaction between two frequencies in Region IV.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Xiaojian Zhou ◽  
Xin Chen ◽  
Yongzhong Song

We investigate the dynamics of a differential-algebraic bioeconomic model with two time delays. Regarding time delay as a bifurcation parameter, we show that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases. Using the theories of normal form and center manifold, we also give the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. Numerical tests are provided to verify our theoretical analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yuanyuan Chen ◽  
Ya-Qing Bi

A delay-differential modelling of vector-borne is investigated. Its dynamics are studied in terms of local analysis and Hopf bifurcation theory, and its linear stability and Hopf bifurcation are demonstrated by studying the characteristic equation. The stability and direction of Hopf bifurcation are determined by applying the normal form theory and the center manifold argument.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Wanyong Wang ◽  
Lijuan Chen

A delayed epidemic model with nonlinear incidence rate which depends on the ratio of the numbers of susceptible and infectious individuals is considered. By analyzing the corresponding characteristic equations, the effects of time delay on the stability of the equilibria are studied. By choosing time delay as bifurcation parameter, the critical value of time delay at which a Hopf bifurcation occurs is obtained. In order to derive the normal form of the Hopf bifurcation, an extended method of multiple scales is developed and used. Then, the amplitude of bifurcating periodic solution and the conditions which determine the stability of the bifurcating periodic solution are obtained. The validity of analytical results is shown by their consistency with numerical simulations.


2020 ◽  
Vol 13 (06) ◽  
pp. 2050047
Author(s):  
Fahad Al Basir

Farming awareness is an important measure for pest controlling in agricultural practice. Time delay in controlling pest may affect the system. Time delay occurs in organizing awareness campaigns, also time delay may takes place in becoming aware of the control strategies or implementing suitable controlling methods informed through social media. Thus we have derived a mathematical model incorporating two time delays into the system and Holling type-II functional response. The existence and the stability criteria of the equilibria are obtained in terms of the basic reproduction number and time delays. Stability changes occur through Hopf-bifurcation when time delays cross the critical values. Optimal control theory has been applied for cost-effectiveness of the delayed system. Numerical simulations are carried out to justify the analytical results. This study shows that optimal farming awareness through radio, TV etc. can control the delay induced bifurcation in a cost-effective way.


2019 ◽  
Vol 29 (12) ◽  
pp. 1950163 ◽  
Author(s):  
Suqi Ma

By applying a geometrical scheme developed to tackle the eigenvalue problem of delay differential equations with multiple time delays, Hopf bifurcation of Hopfield neuron model is analyzed in two-parameter space. By the introduction of two new angles, the calculation of imaginary roots is carried out analytically and effectively. By increasing the parameter to cross over the Hopf bifurcation lines, the stability switching direction is confirmed. The method is a useful tool to show the partition of stable and unstable regions in two-parameter space and detect double Hopf bifurcation further. The typified dynamical behaviors based on nearby double Hopf points are analyzed by applying the normal form technique and center manifold method.


2009 ◽  
Vol 2009 ◽  
pp. 1-16 ◽  
Author(s):  
J. Xu ◽  
K. W. Chung

An efficient method is proposed to study delay-induced strong resonant double Hopf bifurcation for nonlinear systems with time delay. As an illustration, the proposed method is employed to investigate the 1 : 2 double Hopf bifurcation in the van der Pol system with time delay. Dynamics arising from the bifurcation are classified qualitatively and expressed approximately in a closed form for either square or cubic nonlinearity. The results show that 1 : 2 resonance can lead to codimension-three and codimension-two bifurcations. The validity of analytical predictions is shown by their consistency with numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document