scholarly journals Isolation and Identification of Pyrene MineralizingMycobacteriumspp. from Contaminated and Uncontaminated Sources

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Christopher W. M. Lease ◽  
Richard H. Bentham ◽  
Sharyn E. Gaskin ◽  
Albert L. Juhasz

Mycobacteriumisolates obtained from PAH-contaminated and uncontaminated matrices were evaluated for their ability to degrade three-, four- and five-ring PAHs. PAH enrichment studies were prepared using pyrene and inocula obtained from manufacturing gas plant (MGP) soil, uncontaminated agricultural soil, and faeces fromMacropus fuliginosus(Western Grey Kangaroo). Three pyrene-degrading microorganisms isolated from the corresponding enrichment cultures had broad substrate ranges, however, isolates could be differentiated based on surfactant, phenol, hydrocarbon and PAH utilisation. 16S rRNA analysis identified all three isolates asMycobacteriumsp. TheMycobacteriumspp. could rapidly degrade phenanthrene and pyrene, however, no strain had the capacity to utilise fluorene or benzo[a]pyrene. When pyrene mineralisation experiments were performed, 70–79% of added14C was evolved as14CO2after 10 days. The present study demonstrates that PAH degrading microorganisms may be isolated from a diverse range of environmental matrices. The present study demonstrates that prior exposure to PAHs was not a prerequisite for PAH catabolic activity for two of theseMycobacteriumisolates.

Author(s):  
Parmar Keshri Nandan ◽  
Anshita Nagar

ABSTRACTObjective: Food safety is a matter of utmost importance in developing countries as well as in developed countries, so keeping this in mind this researchwork deals with the identification and characterization of bacteriocin producing microbes by using biochemical and molecular characterization. This study has also covered the biopreservation potential of bacteriocin produced by these microbes against sapodilla, tomato and banana as well.Methods: For the purpose of sample collection and isolation, samples of milk, curd and gangajal water were taken and bacteriocin producing microbes were isolated by using serial dilution method. Screening of bacteriocin producing microbe was done by antibacterial sensitivity test using agar well diffusion method against Bacillus amyloliquefaciens, Escherichia Coli, Staphylococcus aureus and Pseudomonas aeruginosa by determining their zone of inhibition. Biochemical characterization was done by using different tests, such as, catalase test, mannitol test, citrate test, gelatin test, maltose test, indole test, urease test, lactose test etc. Molecular characterization was done by using 16S rRNA gene sequencing. Preservative action of bacteriocinwas observed on fruits that comprise sapodilla, tomato and banana by spraying bacteriocin on them and analyzing their activities shows for at least10 days.Results: Microbes were found to be Enterococcus faecalis (Accession number KX011874) and Bacillus cereus (Accession number KX011875). Periodicobservatory studies reflect that using bacteriocin, banana can be preserved for nearly 6-7 days while sapodilla for 8-9 days and tomato for 9-10 days.Conclusion: From present study we would like to conclude that bacteriocins produced by microbes which is found in milk or curd can also be used asbiopreservatives for these defined fruits that is sapodilla, tomato and banana.Keywords: Bacteriocin, Biopreservation, 16S rRNA analysis.


Author(s):  
Balqis, U., ◽  
Hambal, M., ◽  
Admi, M., ◽  
Safika ◽  
Meutia, N., ◽  
...  
Keyword(s):  
16S Rrna ◽  

2021 ◽  
Author(s):  
Maria Iasmina Moza ◽  
Carmen Postolache

AbstractMolecular biology protocols have been more and more accessible to researchers for ecological investigations, however, these protocols always require optimization steps for the analysis of specific types of samples. The purpose of this study was to optimize a molecular protocol for the analysis of cyanobacterial 16S rRNA in Danube Delta shallows lakes. In this regard, several commercial DNA extraction kits were tested in comparison with potassium ethyl xanthogenate extraction method on different matrices. The obtained DNA was further used for 16S rRNA PCR optimization. Finally, an optimized protocol is proposed for the molecular analysis of cyanobacteria group in freshwater samples. The best DNA extraction method was the potassium xanthogenate extraction from dried cyanobacterial biomass. A dynamic in total genomic eDNA was observed, reflecting the seasonal difference in phytoplankton biomass from the studied lakes. The PCR protocol optimized by us can be successfully applied for the identification of a broad range of cyanobacterial genetic markers.


2021 ◽  
Author(s):  
Asma Ben Salem ◽  
Hanene Chaabane ◽  
Tesnime Ghazouani ◽  
Pierluigi Caboni ◽  
Valentina Coroneo ◽  
...  

Abstract Important mineralization of 14C-chlorpyrifos was found in a Tunisian soil exposed repeatedly to this insecticide. A bacterial strain able to grow in minimal salt medium (MSM) supplemented with 25 mg L− 1 of chlorpyrifos was isolated from this soil. It was characterized as Serratia rubidaea strain ABS 10 using morphological and biochemical analyses, as well as 16S rRNA sequencing. In liquid culture S. rubidaea stain ABS 10 was able to almost entirely dissipate chlorpyrifos within 48 hours of incubation. Although, S. rubidaea strain ABS 10 was able to grow on MSM supplemented with chlorpyrifos and to dissipate it in liquid culture, it was not able to mineralize 14C-chlorpyrifos. Therefore, one can conclude that the dissipation capability of this bacteria might be attributed to its capacity to adsorb CHL. In both non-sterile and sterile soil inoculated with S. rubidaea strain ABS 10, chlorpyrifos was more rapidly dissipated than in respective controls.


Author(s):  
Y. Murtala ◽  
B. C. Nwanguma ◽  
L. U. S. Ezeanyika

Background: Despite the banned on the use of dichlorodiphenyltrichloroethane (DDT) and other Persistent Organic Pollutants (POPs) by the Stockholm Convention for their toxicity, emerging shreds of evidence have indicated that DDT is, however, still in use in developing countries. This might increase the global burden of DDT contamination and its hazardous effects. Aim: This study focused on the isolation and characterization of p,p’-DDT-degrading bacterium from a tropical agricultural soil. Methodology: Standard isolation procedure was used for the screening and isolation of the strain. The 16S rRNA and phylogenetic analyses were used to identify the isolate and established protocols were followed to characterize the strain. Results: A new strain belonging to the genus Aeromonas was isolated from agricultural soil using minimal salt-p,p’-DDT enrichment medium. The 16S rRNA sequencing was used to identify the strain and the partial sequence was deposited in the NCBI GenBank as Aeromonas sp. Strain MY1. This mesophilic isolate was capable of utilizing up to 50 mgL-1 of p,p’-DDT as the sole carbon source at an optimum pH of 7.5 and optimum temperature of 35 °C within 120 h under aerobic conditions. Fe2+ (0.2 mgL-1) demonstrated a stimulatory effect on the p,p’-DDT degradation capacity by the strain MY1. However, Zn, Cu, Pb, Hg, Ag and Cr ions have demonstrated various patterns of inhibitory effect on the p,p’-DDT degradation capacity of the isolate at 0.2 mgL-1. The strain MY1 could be a promising candidate for the bioremediation of p,p’-DDT contaminant. Conclusion: Aeromonas sp. strain MY1 was capable of utilizing p,p’-DDT as a sole carbon source under aerobic conditions. The utilization capacity of the strain was influenced by some heavy metals. Fe was found to enhance the p,p’-DDT utilization capacity of the isolate at a lower concentration. While Zn, Cu, Pb, Hg, Ag and Cr showed various patterns of inhibitory effect.


Author(s):  
O. Aleruchi ◽  
O. Obire

This investigation focuses on molecular identification of antibiotic resistant bacteria isolated from petroleum producing vicinity using 16S rRNA sequencing based technique. The bacterial 16s rRNA gene sequences were amplified using polymerase chain reaction, sequenced,  characterized and compared by using primers which has been compared to national center for biotechnology information (NCBI) sequence database. The presence of the plasmid mediated antibiotic resistance determinants CTX-M and QNRB genes in the bacterial isolates were analyzed. A total of four bacterial isolates that were resistant to all the antibiotic agents used were identified molecularly. The BLAST results showed 100 % similarity and phylogenetic study indicated that the genes were evolutionarily related to Morganella morganii, Pseudomonas xiamenensis, Chryseobacterium cucumeris and Staphylococcus sp., respectively. The genes obtained were submitted to the NCBI gene bank and were assigned accession number; MN094330, MN094331, MN094332 and MN094333, respectively. CTX-M and QNRB genes were however absent in the bacterial isolates. The result identified some peculiar abilities of the bacterial isolates to be resistant to antibiotics and suggests a correlation with resistance and hydrocarbon utilizing bacteria. The level of resistance could be as a result of the disinfection process during wastewater treatment procedure or the same adaptive mechanisms possessed by the isolates to control the hydrocarbon concentration in their cell. The study also clearly indicates that these wastewaters, when discharged into the environment directly may pose a risk for the spread of antibiotic resistant bacteria.


2020 ◽  
Author(s):  
Liu Wen-qiang ◽  
Xia Nan ◽  
Zhang Jing-wen ◽  
Wang Ren-hu ◽  
Jiang Gui-miao

ABSTRACTObjectiveThe aim of this study was to identify the biological features, influence factor and Genome-wide properties of pathogenic donkey Escherichia coli (DEC) isolates associated with severe diarrhea in Northern China.MethodsThe isolation and identification of DEC isolates were carried out by the conventional isolation、automatic biochemical analysis system、serotype identification、16S rRNA test、animal challenge and antibiotics sensitivity examination. The main virulence factors were identified by PCR. The complete genomic re-sequence and frame-sequence were analyzed.Results216 strains of DEC were isolated from diarrhea samples, conforming to the bacterial morphology and biochemical characteristics of E.coli. The average size of the pure culture was 329.4 nm×223.5 nm. Agglutination test showed that O78 (117/179, 65.4%) was the dominant serotype and ETEC(130/216, 60.1%) was the dominant pathogenic type. Noticeable pathogenic were observed in 9 of 10 (90%) randomly selected DEC isolates caused the death of test mice (100%, 5/5) within 6h∼48h, 1 of 10 (10%) isolates caused the death of test mice (40%, 2/5) within 72h. Our data confirmed that DEC plays an etiology role in dirarrea/death case of donkey foal. Antibiotics sensitivity test showed significant susceptibility to DEC isolates were concentrated in Nor、EFT、ENR、CIP and AMK,while the isolates with severe antibiotic resistance was AM、TE、APR、FFC、RL and CN. Multi-drug resistance was also observed. A total of 15 virulence gene fragments were determined from DEC(n=30) including OMPA (73%), safD (77%), traTa (73%), STa(67%), EAST1 (67%), astA (63%), kspII (60%), irp2 (73%), iucD (57%), eaeA (57%), VAT (47%), iss (33%), cva (27%), ETT2 (73%) and K88 (60%) respectively. More than 10 virulence genes from 9 of 30(30%) DEC strains were detected, while 6 of 30(20%) DEC strains detected 6 virulence factors. phylogenetic evolutionary tree of 16S rRNA gene from different isolates shows some variability. The original data volume obtained from the genome re-sequencing of DEC La18 was 2.55G and Genome framework sequencing was carried out to demonstrate the predicted functions and evolutionary direction and genetic relationships with other animal E.coli.ConclusionsThese findings provide firstly fundamental data that might be useful in further study of the role of DEC and provide a new understanding of the hazards of traditional colibacillosis due to the appear of new production models.


Sign in / Sign up

Export Citation Format

Share Document