scholarly journals The CSS and The Two-Staged Methods for Parameter Estimation in SARFIMA Models

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Erol Egrioglu ◽  
Cagdas Hakan Aladag ◽  
Cem Kadilar

Seasonal Autoregressive Fractionally Integrated Moving Average (SARFIMA) models are used in the analysis of seasonal long memory-dependent time series. Two methods, which are conditional sum of squares (CSS) and two-staged methods introduced by Hosking (1984), are proposed to estimate the parameters of SARFIMA models. However, no simulation study has been conducted in the literature. Therefore, it is not known how these methods behave under different parameter settings and sample sizes in SARFIMA models. The aim of this study is to show the behavior of these methods by a simulation study. According to results of the simulation, advantages and disadvantages of both methods under different parameter settings and sample sizes are discussed by comparing the root mean square error (RMSE) obtained by the CSS and two-staged methods. As a result of the comparison, it is seen that CSS method produces better results than those obtained from the two-staged method.

2020 ◽  
Vol 26 (1) ◽  
pp. 34-43
Author(s):  
Avishek Choudhury ◽  
Estefania Urena

Background/aims The stochastic arrival of patients at hospital emergency departments complicates their management. More than 50% of a hospital's emergency department tends to operate beyond its normal capacity and eventually fails to deliver high-quality care. To address this concern, much research has been carried out using yearly, monthly and weekly time-series forecasting. This article discusses the use of hourly time-series forecasting to help improve emergency department management by predicting the arrival of future patients. Methods Emergency department admission data from January 2014 to August 2017 was retrieved from a hospital in Iowa. The auto-regressive integrated moving average (ARIMA), Holt–Winters, TBATS, and neural network methods were implemented and compared as forecasters of hourly patient arrivals. Results The auto-regressive integrated moving average (3,0,0) (2,1,0) was selected as the best fit model, with minimum Akaike information criterion and Schwartz Bayesian criterion. The model was stationary and qualified under the Box–Ljung correlation test and the Jarque–Bera test for normality. The mean error and root mean square error were selected as performance measures. A mean error of 1.001 and a root mean square error of 1.55 were obtained. Conclusions The auto-regressive integrated moving average can be used to provide hourly forecasts for emergency department arrivals and can be implemented as a decision support system to aid staff when scheduling and adjusting emergency department arrivals.


2019 ◽  
Vol 6 (04) ◽  
Author(s):  
R C BHARATI ◽  
ANIL KUMAR SINGH

A study was conducted on time-series data on rice production in India. Box-Jenkins Autoregressive Integrated Moving Average (ARIMA) time-series process was considered for predicting country's rice production using the time series data from 1950–51 to 2017–18. Data from 1950–51 to 2014–15 were used for model development and three years data from 2015–16 and 2017–18 were kept for validation The augmented Dicky Fuller test was applied to test stationarity in data set. Root mean square error. Based on ACF and PACF, the model was defined and tested for its suitability. Akaike information criterion and Bayesian information criterion were used to judge the suitability of the model to be fitted. The performance of the fitted model was examined using mean absolute error, mean percent forecast error, root mean square error and Theil's inequality coefficients. IMA (0, 1, 1) model performed well for forecasting purposes. The percent prediction error for the last three years i.e. from 2015–16 and 2017–18, was below 3%. The predicted values along with their standard errors up to the year 2099, were also obtained using the model.


2020 ◽  
Vol 49 (3) ◽  
pp. 57-71
Author(s):  
Azid Maarof Nur Niswah Naslina ◽  
Arasan Jayanthi ◽  
Zulkafli Hani Syahida ◽  
Adam Mohd Bakri

This research focuses on assessing the goodness of fit for the Gompertz model in the presence of right and interval censored data with covariate. The performance of the maximum likelihood estimates was evaluated via a simulation study at various censoring proportions and sample sizes. The conclusions were drawn based on the results of bias, standard error and root mean square error at different settings. Following that, another simulation study was carried out to compare the performance of the proposed modifications to the Cox-Snell residuals for both censored and uncensored observations at different combinations of sample sizes and censoring levels. The results show that standard error and root mean square error values of the parameter estimates increase with the increase in censoring proportions and decrease in the number of sample size. This indicates that the estimates perform better when sample sizes are larger and censoring proportions are lower. The performance of the proposed modifications of the Cox-Snell residuals showed that they perform slightly better than existing method.


2021 ◽  
Vol 26 (1) ◽  
pp. 13-28
Author(s):  
Agus Sulaiman ◽  
Asep Juarna

Beberapa penyebab terjadinya pengangguran di Indonesia ialah, tingkat urbanisasi, tingkat industrialisasi, proporsi angkatan kerja SLTA dan upah minimum provinsi. Faktor-faktor tersebut turut serta mempengaruhi persentase data terkait tingkat pengangguran menjadi sedikit fluktuatif. Berdasarkan pergerakan persentase data tersebut, diperlukan sebuah prediksi untuk mengetahui persentase tingkat pengangguran di masa depan dengan menggunakan konsep peramalan. Pada penelitian ini, peneliti melakukan analisis peramalan time series menggunakan metode Box-Jenkins dengan model Autoregressive Integrated Moving Average (ARIMA) dan metode Exponential Smoothing dengan model Holt-Winters. Pada penelitian ini, peramalan dilakukan dengan menggunakan dataset tingkat pengangguran dari tahun 2005 hingga 2019 per 6 bulan antara Februari hingga Agustus. Peneliti akan melihat evaluasi Range Mean Square Error (RMSE) dan Mean Square Error (MSE) terkecil dari setiap model time series. Berdasarkan hasil penelitian, ARIMA(0,1,12) menjadi model yang terbaik untuk metode Box-Jenkins sedangkan Holt-Winters dengan alpha(mean) = 0.3 dan beta(trend) = 0.4 menjadi yang terbaik pada metode Exponential Smoothing. Pemilihan model terbaik dilanjutkan dengan perbandingan nilai akurasi RMSE dan MSE. Pada model ARIMA(0,1,12) nilai RMSE = 1.01 dan MSE = 1.0201, sedangkan model Holt-Winters menghasilkan nilai RMSE = 0.45 dan MSE = 0.2025. Berdasarkan data tersebut terpilih model Holt-Winters sebagai model terbaik untuk peramalan data tingkat pengangguran di Indonesia.


2021 ◽  
Vol 52 (1) ◽  
pp. 6-14
Author(s):  
Amit Tak ◽  
Sunita Dia ◽  
Mahendra Dia ◽  
Todd Wehner

Background: The forecasting of Coronavirus Disease-19 (COVID-19) dynamics is a centrepiece in evidence-based disease management. Numerous approaches that use mathematical modelling have been used to predict the outcome of the pandemic, including data-driven models, empirical and hybrid models. This study was aimed at prediction of COVID-19 evolution in India using a model based on autoregressive integrated moving average (ARIMA). Material and Methods: Real-time Indian data of cumulative cases and deaths of COVID-19 was retrieved from the Johns Hopkins dashboard. The dataset from 11 March 2020 to 25 June 2020 (n = 107 time points) was used to fit the autoregressive integrated moving average model. The model with minimum Akaike Information Criteria was used for forecasting. The predicted root mean square error (PredRMSE) and base root mean square error (BaseRMSE) were used to validate the model. Results: The ARIMA (1,3,2) and ARIMA (3,3,1) model fit best for cumulative cases and deaths, respectively, with minimum Akaike Information Criteria. The prediction of cumulative cases and deaths for next 10 days from 26 June 2020 to 5 July 2020 showed a trend toward continuous increment. The PredRMSE and BaseRMSE of ARIMA (1,3,2) model were 21,137 and 166,330, respectively. Similarly, PredRMSE and BaseRMSE of ARIMA (3,3,1) model were 668.7 and 5,431, respectively. Conclusion: It is proposed that data on COVID-19 be collected continuously, and that forecasting continue in real time. The COVID-19 forecast assist government in resource optimisation and evidence-based decision making for a subsequent state of affairs.


MATEMATIKA ◽  
2018 ◽  
Vol 34 (3) ◽  
pp. 57-72 ◽  
Author(s):  
Suhartono Suhartono ◽  
Muhammad Munawir Gazali ◽  
Dedy Dwi Prastyo

VARX and GSTARX models are an extension of Vector Autoregressive (VAR) and Generalized Space-Time Autoregressive (GSTAR) models. These models include exogenous variable to increase the forecast accuracy. The objective of this research is to develop and compare the forecast accuracy of VARX and GSTARX models in predicting currency inflow and outflow in Bali, West Nusa Tenggara, and East Nusa Tenggara that contain multiple calendar variations effects. The exogenous variables that are used in this research are holidays in those three locations, i.e. EidFitr, Galungan, and Nyepi. The proposed VARX and GSTARX models are evaluated through simulation studies on the data that contain trend, seasonality, and multiple calendar variations representing the occurrence of EidFitr, Galungan, and Nyepi. The criteria for selecting the best forecasting model is Root Mean Square Error (RMSE). The results of a simulation study show that VARX and GSTARX models provide similar forecast accuracy. Furthermore, the results of currency inflow and outflow data in Bali,West Nusa Tenggara, and East Nusa Tenggara show that the best model for forecasting inflow and outflow in these three locations are VARX and GSTARX (with uniform weight) model, respectively. Both models show that currency inflow and outflow in Bali, West Nusa Tenggara, and East Nusa Tenggara have a relationship in space and time, and contain trends, seasonality and multiple calendar variations.


Author(s):  
Sudip Singh

India, with a population of over 1.38 billion, is facing high number of daily COVID-19 confirmed cases. In this chapter, the authors have applied ARIMA model (auto-regressive integrated moving average) to predict daily confirmed COVID-19 cases in India. Detailed univariate time series analysis was conducted on daily confirmed data from 19.03.2020 to 28.07.2020, and the predictions from the model were satisfactory with root mean square error (RSME) of 7,103. Data for this study was obtained from various reliable sources, including the Ministry of Health and Family Welfare (MoHFW) and http://covid19india.org/. The model identified was ARIMA(1,1,1) based on time series decomposition, autocorrelation function (ACF), and partial autocorrelation function (PACF).


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Ayub Mohammadi ◽  
Khalil Valizadeh Kamran ◽  
Sadra Karimzadeh ◽  
Himan Shahabi ◽  
Nadhir Al-Ansari

Flooding is one of the most damaging natural hazards globally. During the past three years, floods have claimed hundreds of lives and millions of dollars of damage in Iran. In this study, we detected flood locations and mapped areas susceptible to floods using time series satellite data analysis as well as a new model of bagging ensemble-based alternating decision trees, namely, bag-ADTree. We used Sentinel-1 data for flood detection and time series analysis. We employed twelve conditioning parameters of elevation, normalized difference’s vegetation index, slope, topographic wetness index, aspect, curvature, stream power index, lithology, drainage density, proximities to river, soil type, and rainfall for mapping areas susceptible to floods. ADTree and bag-ADTree models were used for flood susceptibility mapping. We used software of Sentinel application platform, Waikato Environment for Knowledge Analysis, ArcGIS, and Statistical Package for the Social Sciences for preprocessing, processing, and postprocessing of the data. We extracted 199 locations as flooded areas, which were tested using a global positioning system to ensure that flooded areas were detected correctly. Root mean square error, accuracy, and the area under the ROC curve were used to validate the models. Findings showed that root mean square error was 0.31 and 0.3 for ADTree and bag-ADTree techniques, respectively. More findings illustrated that accuracy was obtained as 86.61 for bag-ADTree model, while it was 85.44 for ADTree method. Based on AUC, success and prediction rates were 0.736 and 0.786 for bag-ADTree algorithm, in order, while these proportions were 0.714 and 0.784 for ADTree. This study can be a good source of information for crisis management in the study area.


2021 ◽  
Vol 29 (3) ◽  
pp. 368-380
Author(s):  
Cristina Ghinea ◽  
Petronela Cozma ◽  
Maria Gavrilescu

Neural network time series (NNTS) tool was used to predict municipal solid waste composition in Iasi, Romania. The nonlinear input output (NIO) time series model and nonlinear autoregressive model with external (exogenous) input (NARX) included in this tool were selected. The coefficient of determination (R2) and root mean square error (RMSE) were chosen for evaluation. By applying NIO, the optimum model is 4-11-6 artificial neural network (ANN, R2 = 0.929) in the case of testing as for the validation, with all 0.849 and 0.885, respectively. Applying NARX, the suitable model became 4-13-6 ANN model, with R2 = 0.999 for training, 0.879 for testing, and 0.931, respectively 0.944 for validation and all. The resulted RMSE is zero for training and 0.0109 for validation in the case of this model which had 4 inputs, 13 neurons and 6 outputs. The four input variables were: number of residents, population aged 15–59 years, urban life expectancy, total municipal solid waste (ton/year). The suitable ANN model revealed the lowest root mean square error and the highest coefficient of determination. Results indicate that NNTS tool is a complex instrument, NARX is more accurate than NIO model, and can be used and applied easily.


Author(s):  
Rhuan Carlos Martins Ribeiro ◽  
Thaynara Araújo Quadros ◽  
John Jairo Saldarriaga Ausique ◽  
Otavio Andre Chase ◽  
Pedro Silvestre da Silva Campos ◽  
...  

Tuberculosis (TB) remains the world's deadliest infectious disease and is a serious public health problem. Control for this disease still presents several difficulties, requiring strategies for the execution of immediate combat and intervention actions. Given that changes through the decision-making process are guided by current information and future prognoses, it is critical that a country's public health managers rely on accurate predictions that can detect the evolving incidence phenomena. of TB. Thus, this study aims to analyze the accuracy of predictions of three univariate models based on time series of diagnosed TB cases in Brazil, from January 2001 to June 2018, in order to establish which model presents better performance. For the second half of 2018. From this, data were collected from the Department of Informatics of the Unified Health System (DATASUS), which were submitted to the methods of Simple Exponential Smoothing (SES), Holt-Winters Exponential Smoothing (HWES) and the Integrated Autoregressive Moving Average (ARIMA) model. In the performance analysis and model selection, six criteria based on precision errors were established: Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percent Error (MAPE) and Theil's U statistic (U1 and U2). According to the results obtained, the HWES (0.2, 0.1, 0.1) presented a high performance in relation to the error metrics, consisting of the best model compared to the other two methodologies compared here.


Sign in / Sign up

Export Citation Format

Share Document