scholarly journals A DES Procedure Applied to a Wall-Mounted Hump

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Radoslav Bozinoski ◽  
Roger L. Davis

This paper describes a detached-eddy simulation (DES) for the flow over a wall-mounted hump. The Reynolds number based on the hump chord isRec=9.36×105with an in-let Mach number of 0.1. Solutions of the three-dimensional Reynolds-averaged Navier-Stokes (RANS) procedure are obtained using the Wilcoxk−ωequations. The DES results are obtained using the model presented by Bush and Mani and are compared with RANS solutions and experimental data from NASA's 2004 Computational Fluid Dynamics Validation on Synthetic Jets and Turbulent Separation Control Workshop. The DES procedure exhibited a three-dimensional flow structure in the wake, with a 13.65% shorter mean separation region compared to RANS and a mean reattachment length that is in good agreement with experimental measurements. DES predictions of the pressure coefficient in the separation region also exhibit good agreement with experiment and are more accurate than RANS predictions.

2018 ◽  
Vol 240 ◽  
pp. 04001
Author(s):  
Ali Cemal Benim ◽  
Michael Diederich ◽  
Fethi Gül

Aerodynamic behavior of a small wind turbine is analyzed, both experimentally and numerically. Mainly, an unsteady three-dimensional formulation is adopted, where the flow turbulence is modelled by an Improved Delayed Detached Eddy Simulation framework, using the four-equation transitional Shear Stress Transport model, as the turbulence model. A quite good agreement between the measurements and calculations is observed.


2017 ◽  
Vol 14 (03) ◽  
pp. 1750021 ◽  
Author(s):  
A. Niktash ◽  
B. P. Huynh

A windcatcher is a structure for providing natural ventilation using wind power; it is usually fitted on the roof of a building to exhaust the inside stale air to the outside and supplies the outside fresh air into the building interior space working by pressure difference between outside and inside of the building. In this paper, the behavior of free wind flow through a three-dimensional room fitted with a centered position two-canal bottom shape windcatcher model is investigated numerically, using a commercial computational fluid dynamics (CFD) software package and LES (Large Eddy Simulation) CFD method. The results have been compared with the obtained results for the same model but using RANS (Reynolds Averaged Navier–Stokes) CFD method. The model with its surrounded space has been considered in both method. It is found that the achieved results for the model from LES method are in good agreement with RANS method’s results for the same model.


Author(s):  
Hayder Schneider ◽  
Dominic von Terzi ◽  
Hans-Jo¨rg Bauer ◽  
Wolfgang Rodi

Reynolds-Averaged Navier-Stokes (RANS) calculations and Large-Eddy Simulations (LES) of the flow in two asymmetric three-dimensional diffusers were performed. The numerical setup was chosen to be in compliance with previous experiments. The aim of the present study is to find the least expensive method to compute reliably and accurately the impact of geometric sensitivity on the flow. RANS calculations fail to predict both the extent and location of the three-dimensional separation bubble. In contrast, LES is able to determine the amount of reverse flow and the pressure coefficient within the accuracy of experimental data.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1687
Author(s):  
Chao Yu ◽  
Xiangyao Xue ◽  
Kui Shi ◽  
Mingzhen Shao ◽  
Yang Liu

This paper compares the performances of three Computational Fluid Dynamics (CFD) turbulence models, Reynolds Average Navier-Stokes (RANS), Detached Eddy Simulation (DES), and Large Eddy Simulation (LES), for simulating the flow field of a wheel loader engine compartment. The distributions of pressure fields, velocity fields, and vortex structures in a hybrid-grided engine compartment model are analyzed. The result reveals that the LES and DES can capture the detachment and breakage of the trailing edge more abundantly and meticulously than RANS. Additionally, by comparing the relevant calculation time, the feasibility of the DES model is proved to simulate the three-dimensional unsteady flow of engine compartment efficiently and accurately. This paper aims to provide a guiding idea for simulating the transient flow field in the engine compartment, which could serve as a theoretical basis for optimizing and improving the layout of the components of the engine compartment.


2000 ◽  
Vol 122 (4) ◽  
pp. 653-660 ◽  
Author(s):  
M. Greiner ◽  
R. J. Faulkner ◽  
V. T. Van ◽  
H. M. Tufo ◽  
P. F. Fischer

Navier-Stokes simulations of three-dimensional flow and augmented convection in a channel with symmetric, transverse grooves on two opposite walls were performed for 180⩽Re⩽1600 using the spectral element technique. A series of flow transitions was observed as the Reynolds number was increased, from steady two-dimensional flow, to traveling two and three-dimensional wave structures, and finally to three-dimensional mixing. Three-dimensional simulations exhibited good agreement with local and spatially averaged Nusselt number and friction factor measurements over the range 800⩽Re⩽1600. [S0022-1481(00)00904-X]


2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Paul Durbin ◽  
Zifei Yin ◽  
Elbert Jeyapaul

An adaptive method for detached-eddy simulation (DES) is tested by simulations of flow in a family of three-dimensional (3D) diffusers. The adaptive method either adjusts the model constant or defaults to a bound if the grid is too coarse. On the present grids, the adaptive method adjusts the model constant over most of the flow, without resorting to the default. Data for the diffuser family were created by wall-resolved, large-eddy simulation (LES), using the dynamic Smagorinsky model, for the purpose of testing turbulence models. The family is a parameterized set of geometries that allows one to test whether the pattern of separation is moving correctly from the top to the side wall as the parameter increases. The adaptive DES model is quite accurate in this regard. It is found to predict the mean velocity accurately, but the pressure coefficient is underpredicted. The latter is due to the onset of separation being slightly earlier in the DES than in the LES.


Author(s):  
J. Johansen ◽  
N. N. So̸rensen ◽  
J. A. Michelsen ◽  
S. Schreck

The Detached-Eddy Simulation model implemented in the computational fluid dynamics code, EllipSys3D, is applied on the flow around the NREL Phase-VI wind turbine blade. Results are presented for flow around a parked blade at fixed angle of attack and a blade pitching along the blade axis. Computed blade characteristics are compared with experimental data from the NREL/NASA Ames Phase-VI unsteady experiment. The Detached-Eddy Simulation model is a method for predicting turbulence in computational fluid dynamics computations, which combines a Reynolds Averaged Navier-Stokes method in the boundary layer with a Large Eddy Simulation in the free shear flow. The present study focuses on static and dynamic stall regions highly relevant for stall regulated wind turbines. Computations do predict force coefficients and pressure distributions fairly good and results using Detached-Eddy Simulation show considerably more three-dimensional flow structures compared to conventional two-equation Reynolds Averaged Navier-Stokes turbulence models, but no particular improvements are seen on the global blade characteristics.


2019 ◽  
Vol 33 (20) ◽  
pp. 1950228
Author(s):  
Chunlai Tian ◽  
Tairan Chen ◽  
Tian Zou

Unsteady cavitating flow with high Reynolds number and significant instability commonly exists in fluid machinery and engineering system. The high-resolution approaches, such as direct numerical simulation and large eddy simulation, are not practical for engineering issues due to the significant cost in the computational resource. The objective of this paper is to provide the approach with Detached-Eddy Simulation (DES) model based on the Reynolds-averaged Navier–Stokes (RANS) equations for predicting unsteady cavitating flows. The credibility of the approach is validated by a set of numerical examples of its application: the unsteady cavitating flows around the two-dimensional (2D) Clark-Y hydrofoil and the three-dimensional (3D) blunt body. It is found that the calculated cavity shapes, cavity lengths and unsteady characteristics by DES model agree well with the experimental measurements and observations. Further analysis indicates that the turbulent eddy viscosity around the cavity and wake region is well predicted by the DES model, which results in the development of large-scale vortexes, and further cavitation instability. The DES model, which exhibits a significantly unsteady 3D behavior, is a more comprehensive turbulence model for unsteady cavitating flows.


2002 ◽  
Vol 124 (2) ◽  
pp. 393-399 ◽  
Author(s):  
Jens No̸rkær So̸rensen ◽  
Wen Zhong Shen

An aerodynamical model for studying three-dimensional flow fields about wind turbine rotors is presented. The developed algorithm combines a three-dimensional Navier-Stokes solver with a so-called actuator line technique in which the loading is distributed along lines representing the blade forces. The loading is determined iteratively using a blade-element approach and tabulated airfoil data. Computations are carried out for a 500 kW Nordtank wind turbine equipped with three LM19.1 blades. The computed power production is found to be in good agreement with measurements. The computations give detailed information about basic features of wind turbine wakes, including distributions of interference factors and vortex structures. The model serves in particular to analyze and verify the validity of the basic assumptions employed in the simple engineering models.


Author(s):  
Junsu Shin ◽  
Hong-Gye Sung

AbstractNon-reactive flows moving through a model scramjet were investigated using a delayed detached eddy simulation (DDES), which is a hybrid scheme combining Reynolds averaged Navier-Stokes scheme and a large eddy simulation. The three dimensional Navier-Stokes equations were solved numerically on a structural grid using finite volume methods. An in-house was developed. This code used a monotonic upstream-centered scheme for conservation laws (MUSCL) with an advection upstream splitting method by pressure weight function (AUSMPW+) for space. In addition, a 4th order Runge-Kutta scheme was used with preconditioning for time integration. The geometries and boundary conditions of a scramjet combustor operated by DLR, a German aerospace center, were considered. The profiles of the lower wall pressure and axial velocity obtained from a time-averaged solution were compared with experimental results. Also, the mixing efficiency and total pressure recovery factor were provided in order to inspect the performance of the combustor.


Sign in / Sign up

Export Citation Format

Share Document