scholarly journals Ion Channels in Hematopoietic and Mesenchymal Stem Cells

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Serena Pillozzi ◽  
Andrea Becchetti

Hematopoietic stem cells (HSCs) reside in bone marrow niches and give rise to hematopoietic precursor cells (HPCs). These have more restricted lineage potential and eventually differentiate into specific blood cell types. Bone marrow also contains mesenchymal stromal cells (MSCs), which present multilineage differentiation potential toward mesodermal cell types. In bone marrow niches, stem cell interaction with the extracellular matrix is mediated by integrin receptors. Ion channels regulate cell proliferation and differentiation by controlling intracellular Ca2+, cell volume, release of growth factors, and so forth. Although little evidence is available about the ion channel roles in true HSCs, increasing information is available about HPCs and MSCs, which present a complex pattern of K+channel expression. K+channels cooperate with Ca2+and Cl−channels in regulating calcium entry and cell volume during mitosis. Other K+channels modulate the integrin-dependent interaction between leukemic progenitor cells and the niche stroma. These channels can also regulate leukemia cell interaction with MSCs, which also involves integrin receptors and affects the MSC-mediated protection from chemotherapy. Ligand-gated channels are also implicated in these processes. Nicotinic acetylcholine receptors regulate cell proliferation and migration in HSCs and MSCs and may be implicated in the harmful effects of smoking.

2022 ◽  
Vol 12 (2) ◽  
pp. 273-278
Author(s):  
Daqing Jiang ◽  
Xianxin Xie ◽  
Cong Wang ◽  
Weijie Li ◽  
Jianjun He

Our study intends to assess the relationship between exosomes derived from bone marrow mesenchymal stem cells (BMSC-exo) and breast cancer. BMSC-exo were isolated and characterized by transmission electron microscopy. After transfection of BMSCs with miR-204 inhibitor, breast cancer cells were incubated with BMSC-exo followed by analysis of cell proliferation by CCK-8 assay, cell apoptosis by flow cytometry, and expression of apoptosis-related protein and NF-κB signaling by western blot. The co-culture of BMSC-exo with breast cancer cells enhanced miR-204 transcription, inhibited cell proliferation and induced apoptosis. Further, BMSC-exo accelerated apoptosis as demonstrated by the increased level of Bax and casepase-3 and decreased Bcl-2 expression, as well as reduced NF-κB signaling activity. But knockdown of miR-204 abolished the effect of BMSC-exo on apoptosis and proliferation with NF-κB signaling activation. In conclusion, miR-204 from BMSC-exo restrains growth of breast cancer cell and might be a novel target for treating breast cancer.


2021 ◽  
Vol 22 ◽  
Author(s):  
Soheila Montazersaheb ◽  
Ezzatollah Fathi ◽  
Ayoub Mamandi ◽  
Raheleh Farahzadi ◽  
Hamid Reza Heidari

: Tumors are made up of different types of cancer cells that contribute to tumor heterogeneity. Among these cells, cancer stem cells (CSCs) have a significant role in the onset of cancer and development. Like other stem cells, CSCs are characterized by the capacity for differentiation and self-renewal. A specific population of CSCs is constituted by mesenchymal stem cells (MSCs) that differentiate into mesoderm-specific cells. The pro-or anti-tumorigenic potential of MSCs on the proliferation and development of tumor cells has been reported as contradictory results. Also, tumor progression is specified by the corresponding tumor cells like the tumor microenvironment. The tumor microenvironment consists of a network of reciprocal cell types such as endothelial cells, immune cells, MSCs, and fibroblasts as well as growth factors, chemokines, and cytokines. In this review, recent findings related to the tumor microenvironment and associated cell populations, homing of MSCs to tumor sites, and interaction of MSCs with tumor cells will be discussed.


2004 ◽  
Vol 167 (6) ◽  
pp. 1113-1122 ◽  
Author(s):  
Sergei A. Kuznetsov ◽  
Mara Riminucci ◽  
Navid Ziran ◽  
Takeo W. Tsutsui ◽  
Alessandro Corsi ◽  
...  

The ontogeny of bone marrow and its stromal compartment, which is generated from skeletal stem/progenitor cells, was investigated in vivo and ex vivo in mice expressing constitutively active parathyroid hormone/parathyroid hormone–related peptide receptor (PTH/PTHrP; caPPR) under the control of the 2.3-kb bone-specific mouse Col1A1 promoter/enhancer. The transgene promoted increased bone formation within prospective marrow space, but delayed the transition from bone to bone marrow during growth, the formation of marrow cavities, and the appearance of stromal cell types such as marrow adipocytes and cells supporting hematopoiesis. This phenotype resolved spontaneously over time, leading to the establishment of marrow containing a greatly reduced number of clonogenic stromal cells. Proliferative osteoprogenitors, but not multipotent skeletal stem cells (mesenchymal stem cells), capable of generating a complete heterotopic bone organ upon in vivo transplantation were assayable in the bone marrow of caPPR mice. Thus, PTH/PTHrP signaling is a major regulator of the ontogeny of the bone marrow and its stromal tissue, and of the skeletal stem cell compartment.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chengguang Wu ◽  
Long Chen ◽  
Yi-zhou Huang ◽  
Yongcan Huang ◽  
Ornella Parolini ◽  
...  

Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ruifeng Liu ◽  
Wenjuan Chang ◽  
Hong Wei ◽  
Kaiming Zhang

Mesenchymal stem cells (MSCs) exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp.), including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types.


Author(s):  
Florian Lang ◽  
Michael Föller ◽  
Karl Lang ◽  
Philipp Lang ◽  
Markus Ritter ◽  
...  

Author(s):  
Florian Lang ◽  
Ekaterina Shumilina ◽  
Markus Ritter ◽  
Erich Gulbins ◽  
Alexey Vereninov ◽  
...  

2009 ◽  
Vol 21 (1) ◽  
pp. 237 ◽  
Author(s):  
D. Kim ◽  
A. J. Maki ◽  
H.-J. Kong ◽  
E. Monaco ◽  
M. Bionaz ◽  
...  

Adipose tissue presents an appealing alternative to bone marrow as a source of mesenchymal stem cells (MSC). However, in order to enhance cell proliferation and differentiation, 3-dimensional (3-D) culture may be required. A 3-D culture has benefits due to its more in vivo-like environment. Further, to form a functional tissue, a scaffold material is required to ensure proper shape and allow for efficient delivery of nutrients and growth factors. Alginate, a resorbable hydrogel, is a potential injectable scaffold for fat and bone tissue engineering due to its high biocompatibility, gelation with calcium and slow dissolution in a physiologic environment. In the present study, we examined the viability, gene expression and morphology of MSC, isolated from porcine adipose (ADSC) and bone marrow (BMSC), during osteogenic and adipogenic differentiation in a 3D alginate hydrogel environment for 0, 7 and 14 days (d). ADSC and BMSC were infused into alginate hydrogels, which polymerized upon the addition of Ca+2 ions. Both stem cell types were differentiated into osteoblasts using 0.1 μm dexamethasone, 10 mm beta glycerophosphate and 50 μm ascorbic acid, whereas adipocytes were differentiated using 10 μm insulin, 1 μm dexamethasone, and 0.5 mm IBMX. Osteogenic differentiation was confirmed using alkaline phosphatase, Von Kossa, and alizarin red S staining and adipogenic differentiation was confirmed using Oil Red O. Cell viability and proliferation was quantified using the MTT assay. Gene expression was measured using qPCR. The morphology of ADSC and BMSC differentiated toward osteogenic lineages changed with both cell types forming osteogenic nodules over time. The nodules formed by ADSC were larger in diameter than those formed by BMSC. Unlike the osteogenic cells that formed nodules, the ADSC and BMSC differentiated into adipogenic cells showed no significant changes in cell size or aggregation. Gene expression results indicated increased PPARG expression in BMSC with time whereas ADSC showed a peak of expression on day 7 and then decreased. ADSC showed increased (14-fold) PPRG expression when compared with BMSC. ADSC had 160-fold less expression of ALP than BMSC. BMSC showed a 16-fold higher expression level of BGLAP than ADSC. ADSC showed a 15.8% higher expression than BMSC for COL1a1. Both ADSC and BMSC showed similar trends SPARC expression, but BMSC had a 12-fold higher expression of SPP1 than ADSC. In summary, both types of mesenchymal stem cells successfully differentiated into both lineages and maintained viability in the hydrogel over time. In conclusion, alginate is a viable scaffold material for the differentiation of mesenchymal stem cells for tissue engineering applications. These results allow for future studies using the pig as an in vivo fat and bone tissue engineering model. This research was supported by the Illinois Regenerative Medicine Institute.


Sign in / Sign up

Export Citation Format

Share Document