scholarly journals Regulation of Ribosomal RNA Production by RNA Polymerase I: Does Elongation Come First?

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Benjamin Albert ◽  
Jorge Perez-Fernandez ◽  
Isabelle Léger-Silvestre ◽  
Olivier Gadal

Ribosomal RNA (rRNA) production represents the most active transcription in the cell. Synthesis of the large rRNA precursors (35–47S) can be achieved by up to 150 RNA polymerase I (Pol I) enzymes simultaneously transcribing each rRNA gene. In this paper, we present recent advances made in understanding the regulatory mechanisms that control elongation. Built-in Pol I elongation factors, such as Rpa34/Rpa49 in budding yeast and PAF53/CAST in humans, are instrumental to the extremely high rate of rRNA production per gene. rRNA elongation mechanisms are intrinsically linked to chromatin structure and to the higher-order organization of the rRNA genes (rDNA). Factors such as Hmo1 in yeast and UBF1 in humans are key players in rDNA chromatin structure in vivo. Finally, elongation factors known to regulate messengers RNA production by RNA polymerase II are also involved in rRNA production and work cooperatively with Rpa49 in vivo.

2008 ◽  
Vol 36 (4) ◽  
pp. 619-624 ◽  
Author(s):  
Joanna L. Birch ◽  
Joost C.B.M. Zomerdijk

Transcription of the major ribosomal RNAs by Pol I (RNA polymerase I) is a key determinant of ribosome biogenesis, driving cell growth and proliferation in eukaryotes. Hundreds of copies of rRNA genes are present in each cell, and there is evidence that the cellular control of Pol I transcription involves adjustments to the number of rRNA genes actively engaged in transcription, as well as to the rate of transcription from each active gene. Chromatin structure is inextricably linked to rRNA gene activity, and the present review highlights recent advances in this area.


2018 ◽  
Author(s):  
Tommy Darrière ◽  
Michael Pilsl ◽  
Marie-Kerguelen Sarthou ◽  
Adrien Chauvier ◽  
Titouan Genty ◽  
...  

AbstractMost transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that wild-type RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I.Author summaryThe nuclear genome of eukaryotic cells is transcribed by three RNA polymerases. RNA polymerase I (Pol I) is a multimeric enzyme specialized in the synthesis of ribosomal RNA. Deregulation of the Pol I function is linked to the etiology of a broad range of human diseases. Understanding the Pol I activity and regulation represents therefore a major challenge. We chose the budding yeast Saccharomyces cerevisiae as a model, because Pol I transcription apparatus is genetically amenable in this organism. Analyses of phenotypic consequences of deletion/truncation of Pol I subunits-coding genes in yeast indeed provided insights into the activity and regulation of the enzyme. Here, we characterized mutations in Pol I that can alleviate the growth defect caused by the absence of Rpa49, one of the subunits composing this multi-protein enzyme. We mapped these mutations on the Pol I structure and found that they all cluster in a well-described structural element, the jaw-lobe module. Combining genetic and biochemical approaches, we showed that Pol I bearing one of these mutations in the Rpa135 subunit is able to produce more ribosomal RNA in vivo and in vitro. We propose that this super-activity is explained by structural rearrangement of the Pol I jaw/lobe interface.


1995 ◽  
Vol 15 (8) ◽  
pp. 4648-4656 ◽  
Author(s):  
M H Paalman ◽  
S L Henderson ◽  
B Sollner-Webb

We show that the mouse ribosomal DNA (rDNA) spacer promoter acts in vivo to stimulate transcription from a downstream rRNA gene promoter. This augmentation of mammalian RNA polymerase I transcription is observed in transient-transfection experiments with three different rodent cell lines, under noncompetitive as well as competitive transcription conditions, over a wide range of template concentrations, whether or not the enhancer repeats alone stimulate or repress expression from the downstream gene promoter. Stimulation of gene promoter transcription by the spacer promoter requires the rDNA enhancer sequences to be present between the spacer promoter and gene promoter and to be oriented as in native rDNA. Stimulation also requires that the spacer promoter be oriented toward the enhancer and gene promoter. However, stimulation does not correlate with transcription from the spacer promoter because the level of stimulation is not altered by either insertion of a functional mouse RNA polymerase I transcriptional terminator between the spacer promoter and enhancer or replacement with a much more active heterologous polymerase I promoter. Further analysis with a series of mutated spacer promoters indicates that the stimulatory activity does not reside in the major promoter domains but requires the central region of the promoter that has been correlated with enhancer responsiveness in vivo.


2006 ◽  
Vol 27 (3) ◽  
pp. 937-948 ◽  
Author(s):  
Brenden Rickards ◽  
S. J. Flint ◽  
Michael D. Cole ◽  
Gary LeRoy

ABSTRACT Eukaryotic genomes are packaged with histones and accessory proteins in the form of chromatin. RNA polymerases and their accessory proteins are sufficient for transcription of naked DNA, but not of chromatin, templates in vitro. In this study, we purified and identified nucleolin as a protein that allows RNA polymerase II to transcribe nucleosomal templates in vitro. As immunofluorescence confirmed that nucleolin localizes primarily to nucleoli with RNA polymerase I, we demonstrated that nucleolin allows RNA polymerase I transcription of chromatin templates in vitro. The results of chromatin immunoprecipitation experiments established that nucleolin is associated with chromatin containing rRNA genes transcribed by RNA polymerase I but not with genes transcribed by RNA polymerase II or III. Knockdown of nucleolin by RNA interference resulted in specific inhibition of RNA polymerase I transcription. We therefore propose that an important function of nucleolin is to permit RNA polymerase I to transcribe nucleolar chromatin.


1984 ◽  
Vol 99 (2) ◽  
pp. 672-679 ◽  
Author(s):  
U Scheer ◽  
B Hügle ◽  
R Hazan ◽  
K M Rose

Upon incubation of cultured rat cells with the adenosine analogue 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), nucleoli reversibly dissociate into their substructures, disperse throughout the nuclear interior, and form nucleolar "necklaces". We have used this experimental system, which does not inhibit transcription of the rRNA genes, to study by immunocytochemistry the distribution of active rRNA genes and their transcriptional products during nucleolar dispersal and recovery to normal morphology. Antibodies to RNA polymerase I allow detection of template-engaged polymerase, and monoclonal antibodies to a ribosomal protein (S1) of the small ribosomal subunit permit localization of nucleolar preribosomal particles. The results show that, under the action of DRB transcribed rRNA, genes spread throughout the nucleoplasm and finally appear in the form of several rows, each containing several (up to 30) granules positive for RNA polymerase I and argyrophilic proteins. Nucleolar material containing preribosomal particles also appears in granular structures spread over the nucleoplasm but its distribution is distinct from that of rRNA gene-containing granules. We conclude that, although transcriptional units and preribosomal particles are both redistributed in response to DRB, these entities retain their individuality as functionally defined subunits. We further propose that each RNA polymerase-positive granular unit represents a single transcription unit and that each continuous array of granules ("string of nucleolar beads") reflects the linear distribution of rRNA genes along a nucleolar organizer region. Based on the total number of polymerase I-positive granules we estimate that a minimum of 60 rRNA genes are active during interphase of DRB-treated rat cells.


1996 ◽  
Vol 133 (2) ◽  
pp. 225-234 ◽  
Author(s):  
P Jordan ◽  
M Mannervik ◽  
L Tora ◽  
M Carmo-Fonseca

Here we show that the TATA-binding protein (TBP) is localized in the nucleoplasm and in the nucleolus of mammalian cells, consistent with its known involvement in transcription by RNA polymerase I, II, and III. In the nucleolus of actively growing cells, TBP colocalizes with upstream binding factor (UBF) and RNA polymerase I at the sites of rRNA transcription. During mitosis, when rRNA synthesis is down-regulated, TBP colocalizes with TBP-associated factors for RNA polymerase I (TAF(I)s), UBF, and RNA polymerase I on the chromosomal regions containing the rRNA genes. Treatment of cells with a low concentration of actinomycin D inhibits rRNA synthesis and causes a redistribution of the rRNA genes that become concentrated in clusters at the periphery of the nucleolus. A similar redistribution was observed for the major components of the rRNA transcription machinery (i.e., TBP, TAF(I)s, UBF, and RNA polymerase I), which still colocalized with each other. Furthermore, anti-TBP antibodies are shown to coimmunoprecipitate TBP and TAF(I)63 in extracts prepared from untreated and actinomycin D-treated cells. Collectively, the data indicate that in vivo TBP/promoter selectivity factor, UBF, and RNA polymerase I remain associated with both active and inactive rRNA genes.


1998 ◽  
Vol 18 (2) ◽  
pp. 665-675 ◽  
Author(s):  
Hsiu-Jung Lo ◽  
Han-Kuei Huang ◽  
Thomas F. Donahue

ABSTRACT The HIS4 gene in Saccharomyces cerevisiaewas put under the transcriptional control of RNA polymerase I to determine the in vivo consequences on mRNA processing and gene expression. This gene, referred to as rhis4, was substituted for the normal HIS4 gene on chromosome III. Therhis4 gene transcribes two mRNAs, of which each initiates at the polymerase (pol) I transcription initiation site. One transcript, rhis4s, is similar in size to the wild-typeHIS4 mRNA. Its 3′ end maps to the HIS4 3′ noncoding region, and it is polyadenylated. The second transcript,rhis4l, is bicistronic. It encodes the HIS4coding region and a second open reading frame, YCL184, that is located downstream of the HIS4 gene and is predicted to be transcribed in the same direction as HIS4 on chromosome III. The 3′ end of rhis4l maps to the predicted 3′ end of the YCL184 gene and is also polyadenylated. Based on in vivo labeling experiments, the rhis4 gene appears to be more actively transcribed than the wild-type HIS4 gene despite the near equivalence of the steady-state levels of mRNAs produced from each gene. This finding indicated that rhis4mRNAs are rapidly degraded, presumably due to the lack of a cap structure at the 5′ end of the mRNA. Consistent with this interpretation, a mutant form of XRN1, which encodes a 5′-3′ exonuclease, was identified as an extragenic suppressor that increases the half-life of rhis4 mRNA, leading to a 10-fold increase in steady-state mRNA levels compared to the wild-typeHIS4 mRNA level. This increase is dependent on pol I transcription. Immunoprecipitation by anticap antiserum suggests that the majority of rhis4 mRNA produced is capless. In addition, we quantitated the level of His4 protein in a rhis4 xrn1Δ genetic background. This analysis indicates that capless mRNA is translated at less than 10% of the level of translation of capped HIS4 mRNA. Our data indicate that polyadenylation of mRNA in yeast occurs despite HIS4 being transcribed by RNA polymerase I, and the 5′ cap confers stability to mRNA and affords the ability of mRNA to be translated efficiently in vivo.


2015 ◽  
Vol 71 (9) ◽  
pp. 1850-1855 ◽  
Author(s):  
Dirk Kostrewa ◽  
Claus-D. Kuhn ◽  
Christoph Engel ◽  
Patrick Cramer

RNA polymerase I (Pol I) is the central, 14-subunit enzyme that synthesizes the ribosomal RNA (rRNA) precursor in eukaryotic cells. The recent crystal structure of Pol I at 2.8 Å resolution revealed two novel elements: the `expander' in the active-centre cleft and the `connector' that mediates Pol I dimerization [Engelet al.(2013),Nature (London),502, 650–655]. Here, a Pol I structure in an alternative crystal form that was solved by molecular replacement using the original atomic Pol I structure is reported. The resulting alternative structure lacks the expander but still shows an expanded active-centre cleft. The neighbouring Pol I monomers form a homodimer with a relative orientation distinct from that observed previously, establishing the connector as a hinge between Pol I monomers.


2020 ◽  
Vol 48 (11) ◽  
pp. 5891-5906 ◽  
Author(s):  
Cristina Sorino ◽  
Valeria Catena ◽  
Tiziana Bruno ◽  
Francesca De Nicola ◽  
Stefano Scalera ◽  
...  

Abstract Originally identified as an RNA polymerase II interactor, Che-1/AATF (Che-1) has now been recognized as a multifunctional protein involved in cell-cycle regulation and cancer progression, as well as apoptosis inhibition and response to stress. This protein displays a peculiar nucleolar localization and it has recently been implicated in pre-rRNA processing and ribosome biogenesis. Here, we report the identification of a novel function of Che-1 in the regulation of ribosomal RNA (rRNA) synthesis, in both cancer and normal cells. We demonstrate that Che-1 interacts with RNA polymerase I and nucleolar upstream binding factor (UBF) and promotes RNA polymerase I-dependent transcription. Furthermore, this protein binds to the rRNA gene (rDNA) promoter and modulates its epigenetic state by contrasting the recruitment of HDAC1. Che-1 downregulation affects RNA polymerase I and UBF recruitment on rDNA and leads to reducing rDNA promoter activity and 47S pre-rRNA production. Interestingly, Che-1 depletion induces abnormal nucleolar morphology associated with re-distribution of nucleolar proteins. Finally, we show that upon DNA damage Che-1 re-localizes from rDNA to TP53 gene promoter to induce cell-cycle arrest. This previously uncharacterized function of Che-1 confirms the important role of this protein in the regulation of ribosome biogenesis, cellular proliferation and response to stress.


2020 ◽  
Vol 48 (5) ◽  
pp. 1917-1927
Author(s):  
Bruce A. Knutson ◽  
Rachel McNamar ◽  
Lawrence I. Rothblum

RNA polymerase I (Pol I) is the most specialized eukaryotic Pol. It is only responsible for the synthesis of pre-ribosomal RNA (rRNA), the precursor of 18S, 5.8S and 28S rRNA, the most abundant cellular RNA types. Aberrant Pol I transcription is observed in a wide variety of cancers and its down-regulation is associated with several genetic disorders. The regulation and mechanism of Pol I transcription is increasing in clarity given the numerous high-resolution Pol I structures that have helped bridge seminal genetic and biochemical findings in the field. Here, we review the multifunctional roles of an important TFIIF- and TFIIE-like subcomplex composed of the Pol I subunits A34.5 and A49 in yeast, and PAF49 and PAF53 in mammals. Recent analyses have revealed a dynamic interplay between this subcomplex at nearly every step of the Pol I transcription cycle in addition to new roles in chromatin traversal and the existence of a new helix-turn-helix (HTH) within the A49/PAF53 linker domain that expands its dynamic functions during the Pol I transcription process.


Sign in / Sign up

Export Citation Format

Share Document