scholarly journals Analytical Approximate Solutions for the Cubic-Quintic Duffing Oscillator in Terms of Elementary Functions

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
A. Beléndez ◽  
M. L. Alvarez ◽  
J. Francés ◽  
S. Bleda ◽  
T. Beléndez ◽  
...  

Accurate approximate closed-form solutions for the cubic-quintic Duffing oscillator are obtained in terms of elementary functions. To do this, we use the previous results obtained using a cubication method in which the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a cubic Duffing equation. Explicit approximate solutions are then expressed as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function cn. Then we obtain other approximate expressions for these solutions, which are expressed in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean is used and the rational harmonic balance method is applied to obtain the periodic solution of the original nonlinear oscillator.

Author(s):  
Albert C. J. Luo ◽  
Jianzhe Huang

The analytical solutions of the period-1 motions for a hardening Duffing oscillator are presented through the generalized harmonic balance method. The conditions of stability and bifurcation of the approximate solutions in the oscillator are discussed. Numerical simulations for period-1 motions for the damped Duffing oscillator are carried out.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Augusto Beléndez ◽  
Enrique Arribas ◽  
Tarsicio Beléndez ◽  
Carolina Pascual ◽  
Encarnación Gimeno ◽  
...  

Closed-form exact solutions for the periodic motion of the one-dimensional, undamped, quintic oscillator are derived from the first integral of the nonlinear differential equation which governs the behaviour of this oscillator. Two parameters characterize this oscillator: one is the coefficient of the linear term and the other is the coefficient of the quintic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative values of these coefficients which provide periodic motions are considered. The set of possible combinations of signs of these coefficients provides four different cases but only three different pairs of period-solution. The periods are given in terms of the complete elliptic integral of the first kind and the solutions involve Jacobi elliptic function. Some particular cases obtained varying the parameters that characterize this oscillator are presented and discussed. The behaviour of the periods as a function of the initial amplitude is analysed and the exact solutions for several values of the parameters involved are plotted. An interesting feature is that oscillatory motions around the equilibrium point that is not at x=0 are also considered.


2011 ◽  
Vol 18 (11) ◽  
pp. 1661-1674 ◽  
Author(s):  
Albert CJ Luo ◽  
Jianzhe Huang

In this paper, the generalized harmonic balance method is presented for approximate, analytical solutions of periodic motions in nonlinear dynamical systems. The nonlinear damping, periodically forced, Duffing oscillator is studied as a sample problem. The approximate, analytical solution of period-1 periodic motion of such an oscillator is obtained by the generalized harmonic balance method. The stability and bifurcation analysis of the HB2 approximate solution of period-1 motions in the forced Duffing oscillator is carried out, and the parameter map for such HB2 solutions is achieved. Numerical illustrations of period-1 motions are presented. Similarly, the same ideas can be extended to period- k motions in such an oscillator. The methodology presented in this paper can be applied to other nonlinear vibration systems, which are independent of small parameters.


Author(s):  
Henrik Westermann ◽  
Marcus Neubauer ◽  
Jörg Wallaschek

This article illustrates the modeling of a piezomagnetoelastic energy harvesting system. The generator consists of a piezoelectric cantilever with a magnetic tip mass. A second oppositely poled magnet is attached near the free end of the beam. Due to the nonlinear magnetic restoring force the system exhibits two symmetric stable equilibrium positions and one instable equilibrium position. The equation of motion is derived and it is shown that the system can be modeled as Duffing oscillator. An analytical approach is given to derive the Duffing parameters from the system parameters. The Duffing equation is solved for an oscillation around both equilibrium positions by using the harmonic balance method. For small orbit oscillations the equation of motion is solved by applying the fourth-order multiple scales method.


2017 ◽  
Vol 72 (7) ◽  
pp. 673-676
Author(s):  
Baisheng Wu ◽  
Weijia Liu ◽  
C.W. Lim

AbstractA second-order Newton method is presented to construct analytical approximate solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical approximate solution can be derived. The approximate solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Roman N. Lee ◽  
Alexey A. Lyubyakin ◽  
Vyacheslav A. Stotsky

Abstract Using modern multiloop calculation methods, we derive the analytical expressions for the total cross sections of the processes e−γ →$$ {e}^{-}X\overline{X} $$ e − X X ¯ with X = μ, γ or e at arbitrary energies. For the first two processes our results are expressed via classical polylogarithms. The cross section of e−γ → e−e−e+ is represented as a one-fold integral of complete elliptic integral K and logarithms. Using our results, we calculate the threshold and high-energy asymptotics and compare them with available results.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1439
Author(s):  
Chaudry Masood Khalique ◽  
Karabo Plaatjie

In this article, we investigate a two-dimensional generalized shallow water wave equation. Lie symmetries of the equation are computed first and then used to perform symmetry reductions. By utilizing the three translation symmetries of the equation, a fourth-order ordinary differential equation is obtained and solved in terms of an incomplete elliptic integral. Moreover, with the aid of Kudryashov’s approach, more closed-form solutions are constructed. In addition, energy and linear momentum conservation laws for the underlying equation are computed by engaging the multiplier approach as well as Noether’s theorem.


Sign in / Sign up

Export Citation Format

Share Document